如果f(x)在[a,无穷)上单减,在[a,无穷)上的积分:(积分号)f(x)dx收敛,证明x趋向于无穷时lim xf(x
如果f(x)在[a,无穷)上单减,在[a,无穷)上的积分:(积分号)f(x)dx收敛,证明x趋向于无穷时lim xf(x
f(x)dx在[a,+无穷)上广义积分收敛,证明limf(x)=0 (x趋于无穷)
跪谢!实变函数:连续函数f(x)在(a,无穷)上广义积分收敛,f(x)是否在(a,无穷))Lebesgue 可积?
证明:证 若f是[a,b]上的非负严格单调,且f(b)=1.试证:则n趋向于正无穷时积分a到b(f(x))的n次方dx趋
一道无穷积分习题设函数f(x)∈C[0,+∞),无穷积分∫(从0到+∞)f(x)dx绝对收敛,证明:lim(h→0+)∫
函数f(x)在【0,1】上连续可微,证明:lim n->无穷 n积分符号(0——1) x^n f(x)dx=f(1)
若函数f(x)在负无穷到正无穷上连续,当x趋向负无穷时和x趋向正无穷时f(x)的极限都存在,则函数f(x)一致连续.
高数定积分证明题,求证:若f(x)在负无穷到正无穷内连续且为偶函数,则定积分(上限a,下限-a)f(x)dx=2定积分(
f(x)一阶导数在x趋向于无穷时极限为2,那x趋向于无穷时f(x+k)-f(x)等于
当x趋向于无穷时,给出极限f(x)=A的分析定义
设y=f(x)在[a,正无穷]上连续,且x趋于正无穷时,f(x)存在,证明:f在[a,正无穷]上有界
一道关于极限的题目已知当x趋向于正无穷,lim 3xf(x)=lim [4f(x)+6],则lim xf(x)=?