四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=1/2PD
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:16:24
四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=1/2PD
求证(1)BQ∥平面PCD
(2)证明 平面PQ⊥平面DCQ
求证(1)BQ∥平面PCD
(2)证明 平面PQ⊥平面DCQ
(1)通过PD∥QA,CD∥AB,PD、CD相交,QA、AB相交,
证明平面PCD∥QAB,再证明BQ∥平面PCD
(2)PD⊥平面ABCD,PD∥QA,可得QA⊥平面ABCD
通过线面垂直,得QA⊥AB、PD⊥AB,证AB⊥平面PQAD,再证明PQ⊥CD
利用QA=AB=1/2PD及其他垂直关系构成的三角形等,证明出PQ、QD、PD满足勾股定理逆定理,即PQ⊥QD,再由PQ⊥CD、QD与CD相交,证明平面PQ⊥平面DCQ
证明平面PCD∥QAB,再证明BQ∥平面PCD
(2)PD⊥平面ABCD,PD∥QA,可得QA⊥平面ABCD
通过线面垂直,得QA⊥AB、PD⊥AB,证AB⊥平面PQAD,再证明PQ⊥CD
利用QA=AB=1/2PD及其他垂直关系构成的三角形等,证明出PQ、QD、PD满足勾股定理逆定理,即PQ⊥QD,再由PQ⊥CD、QD与CD相交,证明平面PQ⊥平面DCQ
四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=1/2PD
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=1/2PD
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=1/2PD(1)证明:平面PQC⊥平面DCQ(
四边形ABCD为正方形,QA垂直平面ABCD,PD平行QA,QA=AB=1\2PD 证明PD垂直平面DCQ
如图四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:平面PQC⊥平面DCQ;(2)
四边形ABCD为正方形,QA垂直于平面ABCD,PD平行于QA,QA=AB=1/2PD,证明:PQ垂直于平面DCQ
如图,四边形ABCD为正方形,PD垂直面ABCD,PD平行QA,QA=AB=1/2PD.1、证明面PQC垂直面DC
如图,四边形ABCD为正方形,PD垂直面ABCD,PD平行QA,QA=AB=1/2PD、证明面PQC垂直面DCQ
四边形ABCD为正方形,PD垂直面ABCD,PD平行QA,QA=AB=1/2PD、证明面PQC垂直面DCQ求二面角q-b
四边形ABCD为正方形,PD垂直平面ABCD,PD平行QA,QA=AD=1,且Vq-abcd=Vc-pqd.证明平面PQ
四边形ABCD为正方形PD垂直ABCD PD平行QA QA=AB=0·5PD 求二面角Q-BP-C的余弦值
如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PC、PD、B