已知双曲线x29-y216=1的左、右焦点分别为F1、F2,若双曲线上一点P使得∠F1PF2=90°,求△F1PF2的面
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:33:03
已知双曲线
x
∵双曲线方程
x2 9− y2 16=1=1, ∴a=3,b=4,c= 9+16=5.(2分) 由双曲线的定义,得|PF1|-|PF2|=±2a=±6,(4分) 将此式两边平方,得|PF1|2+|PF2|2-2|PF1|•|PF2|=36, ∴|PF1|2+|PF2|2=36+2|PF1|•|PF2|.(6分) 又∵∠F1PF2=90°, ∴|PF1|2+|PF2|2=100, =36+2|PF1|•|PF2|, ∴|PF1|•|PF2|=32,(10分) ∴S△F1PF2= 1 2|PF1|•|PF2|= 1 2×32=16.(12分)
已知双曲线x29-y216=1的左、右焦点分别为F1、F2,若双曲线上一点P使得∠F1PF2=90°,求△F1PF2的面
设F1、F2分别为双曲线X^2/4-Y^2=I的左、右焦点,点P在双曲线上满足∠F1PF2=90°,那么△F1PF2的面
已知双曲线x2/9-y2/16=1的左右焦点分别是f1,f2,若双曲线上的一点p使得角f1pf2=60度求f1pf2的面
已知双曲线x^2/9-y^2/16=1的左右焦点分别是F1,F2,若双曲线上一点P使得∠F1PF2=90°,求△F1PF
已知双曲线x2−y23=1的两个焦点分别为F1、F2,点P为双曲线上一点,且∠F1PF2=90°,则△F1PF2的面积等
点P是双曲线x24−y212=1上的一点,F1、F2分别是双曲线的左、右两焦点,∠F1PF2=90°,则|PF1|•|P
F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12√3,离心率为2,求此双曲
已知双曲线C:x29−y216=1的左右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=|F1F2|,则△PF1
已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=(
双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且∠F1PF2=60°,S△F1PF2=12√3,求双曲线的
已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△F1P
已知F1、F2是双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,若在双曲线上的点P满足∠F1PF2=60°,
|