作业帮 > 数学 > 作业

已知a、b、c为三角形边长.求证:ab+bc+ac

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 20:44:55
已知a、b、c为三角形边长.求证:ab+bc+ac
已知a、b、c为三角形边长.求证:ab+bc+ac
a^2+b^2+c^2-ab-ac-bc =(a^2-2ab+b^2+a^2-2ac+c^2+b^2-2bc+c^2)/2 =[(a-b)^2+(a-c)^2+(b-c)^2]/2>0 a^2+b^2+c^2>ab+ac+bc(如为等边三角形则a^2+b^2+c^2-ab-ac-bc=0 ) a、b、c为三角形边长(应为不相等,如为等边三角形则a^2+b^2+c^2-ab-ac-bc=0) 又由余弦定理得:a^2+b^2-c^2=2abCosC b^2+c^2-a^2=2bcCosA a^2+c^2-b^2=2acCosB 三式相加 :a^2+b^2+c^2=2abCosC+2acCosB+2bcCosA 三角形的三内角余弦不能同时为1 a^2+b^2+c^2