有几道数学题,已知,△ABC中,AB=AC,角BAC=120°,AB⊥BD,∠DAE=60°,求证:BD+2EC=√3A
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 21:08:07
有几道数学题,
已知,△ABC中,AB=AC,角BAC=120°,AB⊥BD,∠DAE=60°,求证:BD+2EC=√3AC.
已知,矩形ABCD沿AE折叠后B与G重合,且CE:BE=1:2,求证:AF-FD=3/2AB.
已知,矩形ABCD中,B(8,5),点P(m,0),且0<m<8,点O关于直线PC的对称点为O,直线CD交直线AB于Q.求m为何值时,△PCQ是以PQ为底边的等腰三角形.
已知,△ABC中,AB=AC,角BAC=120°,AB⊥BD,∠DAE=60°,求证:BD+2EC=√3AC.
已知,矩形ABCD沿AE折叠后B与G重合,且CE:BE=1:2,求证:AF-FD=3/2AB.
已知,矩形ABCD中,B(8,5),点P(m,0),且0<m<8,点O关于直线PC的对称点为O,直线CD交直线AB于Q.求m为何值时,△PCQ是以PQ为底边的等腰三角形.
由于时间关系先给你解第一、二题
1)过A作AM⊥BC于M
∵∠BAC=120° AB=AC∴∠ABC=30°,MC=1/2BC∵cos30=MC/AC=√3/2∴MC=√3/2AC ∴BC=√3AC∵AB⊥BD∴∠CBD=∠DAE=60°∴∠D=∠AEB
∴△ABD∽△AME∴AB/AM=BD/ME∵∠ABC=30∴AB=2AM∴BD=2ME
∵ME+EC=MC=1/2BC∴1/2BD+EC=1/2BC=√3/2AC∴BD+2EC=√3AC(等式两边同时扩大2倍)
2)延长GE、FC交于N
∵翻折∴∠BAE=∠GAE∵AB∥CD∴∠BAE=∠AND∴∠GAE=∠AND∴AF=FN∴AF-FD=FN-FD=DN∵AB∥CD∴△NCE∽△ABE∴NE/EA=CE/BE=1/2∵AD∥BC∴△NEC∽△NAD∴NE/EA=NC/CD=1/2∴CD/DN=2/3∴AB=CD=12/3DN=2/3(AF-FD)∴AF-FD=3/2AB
1)过A作AM⊥BC于M
∵∠BAC=120° AB=AC∴∠ABC=30°,MC=1/2BC∵cos30=MC/AC=√3/2∴MC=√3/2AC ∴BC=√3AC∵AB⊥BD∴∠CBD=∠DAE=60°∴∠D=∠AEB
∴△ABD∽△AME∴AB/AM=BD/ME∵∠ABC=30∴AB=2AM∴BD=2ME
∵ME+EC=MC=1/2BC∴1/2BD+EC=1/2BC=√3/2AC∴BD+2EC=√3AC(等式两边同时扩大2倍)
2)延长GE、FC交于N
∵翻折∴∠BAE=∠GAE∵AB∥CD∴∠BAE=∠AND∴∠GAE=∠AND∴AF=FN∴AF-FD=FN-FD=DN∵AB∥CD∴△NCE∽△ABE∴NE/EA=CE/BE=1/2∵AD∥BC∴△NEC∽△NAD∴NE/EA=NC/CD=1/2∴CD/DN=2/3∴AB=CD=12/3DN=2/3(AF-FD)∴AF-FD=3/2AB
已知,△ABC中,AB=AC,角BAC=120°,AB⊥BD,∠DAE=60°,求证:BD+2EC=√3AC.
有几道数学题,已知,△ABC中,AB=AC,角BAC=120°,AB⊥BD,∠DAE=60°,求证:BD+2EC=√3A
已知在△ABC中,AB=AC,∠BAC=90°,∠DAE=45°,求证BD²+CE²=DE²
如图,△ABC中,AB=AC,∠BAC=90°,EC⊥BC,EC=BD,DF=DE.求证:AF⊥DE 、
如图,△ABC中,AB=AC,∠BAC=90°,EC⊥BC,EC=BD,DF=DE.求证:AF⊥DE
在△ABC中,AB=AC,∠BAC=90°,D、E是BC上两点,且∠DAE=45°,求证:以BD、DE和EC为边可以构成
已知:如图在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于E.求证BD=2CE.
在直角三角形ABC中,∠BAC=90°,AB=AC,D、E为B、C上两点,且∠DAE=45°,求证BD²+EC
初三相似三角形题如图,在△ABC中,AB=AC,∠BAC=90°,BD是中线,AE⊥BD,交BC于点E,求证BE=2EC
三角形ABC中,角BAC=60°,CD垂直AB,求证:BD=AB-1/2AC
在△ABC中,∠BAC=90°,AC=AB,∠DAE=45°,且BD=2,CE=3,求DE
已知三角形ABC中,AB=2AC,AD平分∠BAC,且AD=BD,求证:CD⊥AC.