(2014•白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:34:34
(2014•白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.
(1)求证:DE是半圆⊙O的切线.
(2)若∠BAC=30°,DE=2,求AD的长.
(1)求证:DE是半圆⊙O的切线.
(2)若∠BAC=30°,DE=2,求AD的长.
(1)证明:连接OD,OE,
∵AB为圆O的直径,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E为斜边BC的中点,
∴DE=BE,
在△OBE和△ODE中,
OB=OD
OE=OE
BE=DE,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
则DE为圆O的切线;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=
1
2AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=60°,DE=DC,
∴△DEC为等边三角形,即DC=DE=2,
则AD=AC-DC=6.
∵AB为圆O的直径,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E为斜边BC的中点,
∴DE=BE,
在△OBE和△ODE中,
OB=OD
OE=OE
BE=DE,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
则DE为圆O的切线;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=
1
2AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=60°,DE=DC,
∴△DEC为等边三角形,即DC=DE=2,
则AD=AC-DC=6.
(2014•白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE
如图,在RT△ABC中,∠ABC=90°,以AB为直径作圆O交AC边于点D,E是边BC的中点,连接DE
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
如图8,RTΔABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC中点,连接DE.求证:直线DE是⊙
如图,Rt△ABC中,∠ABC=90°,AB=BC=4,以AB为直径作圆O交AC边于点D,E是边BC的中点,连结DE.
如图,在Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC边于点D,E是边BC的中点,连接DE.
如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠
如图,在Rt△ABC中,∠C=90°,点D是AB上一点,以AD为直径作⊙O交AC于E,与BC相切于点F,连接AF。(1)
如图所示,Rt△ABC中,角ABC=90°,以AB为直径作○O交AC边于点D,E是边BC的中点,连接DE.
如图,Rt△ABC中,角ACB=90°.以BC为直径作圆心O交AB于D.E为AC中点.连接DE.求证DE是圆心O的切线
以RT三角形ABC的直角边AB为直径作圆O,与斜边AC交于点D,E为BC上中点,连接DE
如图在RT三角形ABC中,AB=BC,以AB为直径做半圆,圆O交AC于点D,连接DB做DE垂直BC,垂足为E,求DE与圆