已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x)求证OA+OC
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 22:56:29
已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x)求证OA+OC与OB共线,且OA-OC与OB垂直
已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x).求证OA+OC与OB共线,且向量OA-向量OC与OB垂直
已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x).求证OA+OC与OB共线,且向量OA-向量OC与OB垂直
证明:已知向量OA=(1,0),OC=(cos2x,sin2x),则:
向量OA+OC=(1,0)+(cos2x,sin2x)=(1+cos2x,sin2x)=(2cos²x,2sinxcosx)=2cosx(cosx,sinx)
又向量OB=(cosX,sinX),所以:
向量OA+OC=cosx*向量OB
这就是说向量OA+OC与OB共线
又向量OA-OC=(1,0)-(cos2x,sin2x)=(1-cos2x,-sin2x)=(2sin²x,-2sinxcosx)且向量OB=(cosX,sinX),
那么:(向量OA-OC)*向量OB
=(2sin²x,2sinxcosx)*(cosX,sinX)
=2sin²xcosx-2sin²xcosx
=0
所以:向量OA-向量OC与OB垂直
向量OA+OC=(1,0)+(cos2x,sin2x)=(1+cos2x,sin2x)=(2cos²x,2sinxcosx)=2cosx(cosx,sinx)
又向量OB=(cosX,sinX),所以:
向量OA+OC=cosx*向量OB
这就是说向量OA+OC与OB共线
又向量OA-OC=(1,0)-(cos2x,sin2x)=(1-cos2x,-sin2x)=(2sin²x,-2sinxcosx)且向量OB=(cosX,sinX),
那么:(向量OA-OC)*向量OB
=(2sin²x,2sinxcosx)*(cosX,sinX)
=2sin²xcosx-2sin²xcosx
=0
所以:向量OA-向量OC与OB垂直
已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x)求证OA+OC
已知O为坐标原点,三个向量分别为OA=(3cosx,3sinx),OB=(3cosx,sinx),OC =(根号3,0)
平面直角坐标系中,O为原点坐标,向量OA*OB=向量OB*OC=向量OC*OA
已知O为原点,向量OA=(3,0,1),OB=(-1,1,2),OC丄OA,BC平行向量OA,求向量AC
设OA向量=(3,1),OB向量=(-1,2),OC向量⊥OB向量,BC向量‖OA向量,试求OC向量的坐标(O为坐标原点
已知向量OA,OB,OC满足条件OA+OB+OC=0(都是向量),且|OA|=|OB|=|OC|=1,求证:△ABC是正
设O为坐标原点,向量OA=(3,1),向量OB=(-1,2),向量OC⊥向量OB,向量BC∥向量OA,若向量OD+向量O
已知O为ΔABC的重心,证明 向量OA+向量OB+向量OC=0
已知O是三角形ABC的外心,且向量OP=向量OA+向量OB+向量OC,向量OQ=1/3(向量OA+向量OB+向量OC),
已知平面上有四点O,A,B,C,满足向量OA+OB+OC=0,OA*OB=OB*OC=OC*OA=1
【数学】已知△ABC内接于圆O:x^2+y^2=1(O为坐标原点),且3向量OA+4向量OB+5向量OC=0向量
已知向量OA=(3,-4),向量OB(6,-3),向量OC=(5-x,-3-y)(其中O为坐标原点)