高中立体几何题如图,PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点.若二面角P-CD-B为45°
高中立体几何题如图,PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点.若二面角P-CD-B为45°
四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°,
P是矩形ABCD所在平面外一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,二面角P-CD-B为45°,证:AF‖
P为矩形ABCD所在平面外的一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°
四棱锥P-ABCD底面是矩形,PA垂直于ABCD,E.F分别是AB ,PD的中点又二面角P-CD-B为45度 求证:平面
,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形.E,F分别是AB,PD的中点,若PA=AD=3,CD=
四棱锥P-ABCD底面是矩形,PA垂直于ABCD,E.F分别是AB ,PD的中点又二面角P-CD-B为45度 1)求证:
如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点.若PA=AD=3,C
如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点.若PA=AD=3
如图,四棱锥P-ABCD的底面是举行,PA⊥平面ABCD,EF分别是AB,PD的中点,二面角P-CD-B的大小为45°,
在四棱锥P-ABCD中,底面ABCD是矩形,PA垂直平面ABCD,E,F分别是AB,PD的中点.求证:AF平行平面PEC
已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是 AB、PC的中点