(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 21:01:33
(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的中点,连接MN.
(1)如图①,求证:MN是⊙O的切线;
(2)如图②,作直径MD,连接DN,若MN=
(1)如图①,求证:MN是⊙O的切线;
(2)如图②,作直径MD,连接DN,若MN=
3 |
2 |
(1)证明:连结CM、OM,如图①,
∵AC为⊙O的直径,
∴∠AMC=90°,
∵点N是边BC的中点,
∴NM=NC,
∴∠1=∠2,
∵OM=OC,
∴∠3=∠4,
∴∠1+∠4=∠2+∠3,即∠OMN=∠OCN,
而∠ACB=90°,
∴∠OMN=90°,
∴OM⊥MN,
∴MN是⊙O的切线;
(2)连结MC,如图②,由①得MN为Rt△BCM的斜边BC上的中线,
∴BC=2MN=2×
3
2=3,
在Rt△ABC中,sinA=
BC
AB=
3
5,
∴AB=5,
∴AC=
AB2−BC2=4,
∴MD=4,
在Rt△DMN中,DN=
DM2+MN2=
42+(
3
2)2=
73
2.
∵AC为⊙O的直径,
∴∠AMC=90°,
∵点N是边BC的中点,
∴NM=NC,
∴∠1=∠2,
∵OM=OC,
∴∠3=∠4,
∴∠1+∠4=∠2+∠3,即∠OMN=∠OCN,
而∠ACB=90°,
∴∠OMN=90°,
∴OM⊥MN,
∴MN是⊙O的切线;
(2)连结MC,如图②,由①得MN为Rt△BCM的斜边BC上的中线,
∴BC=2MN=2×
3
2=3,
在Rt△ABC中,sinA=
BC
AB=
3
5,
∴AB=5,
∴AC=
AB2−BC2=4,
∴MD=4,
在Rt△DMN中,DN=
DM2+MN2=
42+(
3
2)2=
73
2.
(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的
如图,在Rt△ABC中,∠C=90°,点D是AB上一点,以AD为直径作⊙O交AC于E,与BC相切于点F,连接AF。(1)
如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切
如图,在Rt△ABC中,角ACB=90°,以AC为直径的圆O与AB边交于点D,过点D作圆O的切线,交BC于点E
(2012•温州二模)如图,在Rt△ABC中,∠C=90°,以AC为直径作圆O,交AB边于点D,过点O作OE∥AB,交B
(2011•丰台区二模)已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC边相切于点
如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,过点D的切线交BC边于点E.
如图,已知在Rt△ABC中,∠C=90°,以AC为直径作圆O,交AB于D点,过点O作OE∥AB,交BC于E.
如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠
如图,在RT△ABC中,∠ABC=90°,以AB为直径作圆O交AC边于点D,E是边BC的中点,连接DE
(2014•白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE
如图,Rt△ABC中,∠ABC=90°,AB=BC=4,以AB为直径作圆O交AC边于点D,E是边BC的中点,连结DE.