作业帮 > 综合 > 作业

(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 21:01:33
(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的中点,连接MN.  
(1)如图①,求证:MN是⊙O的切线;
(2)如图②,作直径MD,连接DN,若MN=
3
2
(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的
(1)证明:连结CM、OM,如图①,
∵AC为⊙O的直径,
∴∠AMC=90°,
∵点N是边BC的中点,
∴NM=NC,
∴∠1=∠2,
∵OM=OC,
∴∠3=∠4,
∴∠1+∠4=∠2+∠3,即∠OMN=∠OCN,
而∠ACB=90°,
∴∠OMN=90°,
∴OM⊥MN,
∴MN是⊙O的切线;
(2)连结MC,如图②,由①得MN为Rt△BCM的斜边BC上的中线,
∴BC=2MN=2×
3
2=3,
在Rt△ABC中,sinA=
BC
AB=
3
5,
∴AB=5,
∴AC=
AB2−BC2=4,
∴MD=4,
在Rt△DMN中,DN=
DM2+MN2=
42+(
3
2)2=

73
2.