证明数列a(n-1)-a(n)是等比数列
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 11:44:51
证明数列a(n-1)-a(n)是等比数列
已知数列a(n)满足a1=1,a2=3,a(n+2)=3a(n+1)-2a(n)(n属于N*)
已知数列a(n)满足a1=1,a2=3,a(n+2)=3a(n+1)-2a(n)(n属于N*)
a(n+2)=3a(n+1)-2a(n)
=>a(n+2)-a(n+1)=2[a(n+1)-a(n)]
∴a(n+2)-a(n+1)是公比为2的等比数列
即有a(n+2)-a(n+1)=(2^n)(a2-a1)=2^(n+1)
即an-a(n-1)=2^(n-1),等式两边对n求和得
∴an-a1=2²+2³+...+2^(n-1)
=>an=1+2²+...+2^n=2^n-1
=>a(n+2)-a(n+1)=2[a(n+1)-a(n)]
∴a(n+2)-a(n+1)是公比为2的等比数列
即有a(n+2)-a(n+1)=(2^n)(a2-a1)=2^(n+1)
即an-a(n-1)=2^(n-1),等式两边对n求和得
∴an-a1=2²+2³+...+2^(n-1)
=>an=1+2²+...+2^n=2^n-1
证明数列a(n-1)-a(n)是等比数列
在数列{an}中,a1=2,a(n+1)=4an-3n+1(n为正整数),证明数列{an-n}是等比数列
数列{a},a(1)=2,a(n+1)=4a(n)--3n+1,n属于正整数.证明{a(n)--n}是等比数列;求数列{
已知数列{an}中,a1=2,a(n+1)=an2+2an(n∈N*).(1)证明数列{lg(1+an)}是等比数列,
在数列{an},a1=2,a(n+1)=4an-3n+1,n∈N+.(1)证明数列{an-n}是等比数列(2)求数列{a
证明数列是等比数列数列前n项和为Sn,a1=1,a(n+1)=(n+2)Sn/n,求证Sn/n是等比数列,
等比数列的证明方式数列An的前n项和为Sn,A1=1,A(n+1)=2Sn+1,证明数列An是等比数列
在数列{an}中,a1=2,a(n+1)=4an-3n+1.(1)证明{an-n}是等比数列 (2)求数列{an}的前n
a1=3.a(n+1)=2an-1,证明数列an-1是等比数列
在数列{an}中,a1=1,2a(n+1)=(1+1/n)^2*an,(1)证明数列{an/n^2}是等比数列,并求{a
等比数列性质证明若{A(n)}是等比数列,那么{A(n)+A(n+1)}是否是等比数列?
数列an满足a1=-1,且an=3a(n-1)-2n=3,求a2,a3,并证明数列(an-n)是等比数列,求an