已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根号2.且过点M(4,-根10)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 22:27:02
已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根号2.且过点M(4,-根10)
(1)求双曲线方程
(2)若点M(3.m)在双曲线上.求证MF1垂直于MF2
(3)求△F1MF2的面积
(1)求双曲线方程
(2)若点M(3.m)在双曲线上.求证MF1垂直于MF2
(3)求△F1MF2的面积
由题意
(1)离心率e=c/a=√2则c=√2a
b^2=c^2-a^2=a^2
a=b,双曲线为等轴双曲线设方程x^2-y^2=λ
代点M(4,-√10)得λ=4
双曲线方程x^2/4-y^2/4=1
(2)F1(-2√2,0),F2(2√2,0)
点M(3.m)在双曲线上,则9/4-m^2/4=15,
m^2=
向量MF1.向量MF2=(-2√2-3,-m).(2√2-3,-m)
=-5+5=0
所以MF1⊥于MF2
(3)求△F1MF2的面积,最简单做法用焦点三角形的面积公式
△F1MF2的面积=b^2cot(角F1MF2/2)
=4cot(90°/2)=4cot45°=4
(1)离心率e=c/a=√2则c=√2a
b^2=c^2-a^2=a^2
a=b,双曲线为等轴双曲线设方程x^2-y^2=λ
代点M(4,-√10)得λ=4
双曲线方程x^2/4-y^2/4=1
(2)F1(-2√2,0),F2(2√2,0)
点M(3.m)在双曲线上,则9/4-m^2/4=15,
m^2=
向量MF1.向量MF2=(-2√2-3,-m).(2√2-3,-m)
=-5+5=0
所以MF1⊥于MF2
(3)求△F1MF2的面积,最简单做法用焦点三角形的面积公式
△F1MF2的面积=b^2cot(角F1MF2/2)
=4cot(90°/2)=4cot45°=4
已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根号2.且过点M(4,-根10)
已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根2.且过点(4,-根10)
已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根2.且过点M(4,-根10) (1)求双曲线方程 (2)若点
已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为根号2,且过点(4,-根号10).(1)求双曲线方程
已知双曲线的中心在原点,焦点F1和F2在坐标轴上,离心率为根号2,且过点(4,-根号10)
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10).
已知双曲线的中心在原点.焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10).
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10)点M(3,m)在双曲线上
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率是根号2,且过点(4,根号10)
(1/2)已知双曲线的中心在原点上,焦点F1,F2在坐标轴上,离心率为根号2,且过(4,-根号10).(1)求双曲...
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为√2 ,且过点(4,-√10) 1'
圆锥曲线的数学题已知双曲线的中心在原点,焦点F1.F2在坐标轴上,离心率为根号2,且过点(4,-根号10)(1).求此双