设ln(x^2+y^2)=arctan(y/x),则dy/dx=
设ln(x^2+y^2)=arctan(y/x),则dy/dx=
arctan(y/x)=ln(sqrt(x^2+y^2)),请问dy/dx是什么?
ln√(x^2+y^2)=arctan(y/x)的导数dy/dx
设y=arctan(a/x)+1/2[ln(x-a)-ln(x+a)],求dy|x=0
对于等式arctan(y/x)=ln(sqrt(x^2=y^2)),用matlab求:dx/dy.
已知函数arctan(y/x)=ln√((x∧2)+(y∧2)),求dy/dx
函数y=arctan(1+x^2)求dy/dx
设 x/y=ln(y/x) ,求 dy/dx
设函数y=arctan(1+x^2),求dy/dx.
设函数y=ln(x-2),则dy/dx=多少
设y=1/a arctan x/a ,则 dy/dx
设y=ln(1+x^2)则dy=