设函数f(x)= ax^2+bx+c,且f(l)=-a/2 ,3a>2c>2b,求证:
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 18:58:46
设函数f(x)= ax^2+bx+c,且f(l)=-a/2 ,3a>2c>2b,求证:
(1)a>0且-3
(1)a>0且-3
f(x)=ax^2+bX+c,且f(1)=-a/2
3a + 2(b + c) = 0 ,a = -2(b + c)/3 ,
证函数有两个零点 ,等价于证明b^2 - 4ac > 0 ,
等价于证明:b^2 > -8c(b + c)/3 ,
等价于证明:b^2 + 2(b + 2c)^2 > 0 ,
如果b 、c同时为0 ,则a也为0 ,则f(x)成为y轴 ,此时1不在定义域内 ,与
“f(1)=-a/2”不符 ,故b、c不同时为0 ,因此 b^2 + 2(b + 2c)^2 > 0 ,
.所以 ,函数有两个零点
|x1-x2|·|x1-x2| = (x1 - x2)^2
= (x1 + x2)^2 - 4x1x2 = (b^2 - 4ac)/a^2 > 0 ,|x1-x2| > 0
[f(0) + f(2)]/2 = [c + (4a + 2b + c)]/2 = a/2 ,与f(1) = -a/2 异号 ,
故分别在区间(f(0),f(1))和(f(1),f(2))内存在点:x0、y0 ,使得这两点的一阶导数值为0 ,(0
3a + 2(b + c) = 0 ,a = -2(b + c)/3 ,
证函数有两个零点 ,等价于证明b^2 - 4ac > 0 ,
等价于证明:b^2 > -8c(b + c)/3 ,
等价于证明:b^2 + 2(b + 2c)^2 > 0 ,
如果b 、c同时为0 ,则a也为0 ,则f(x)成为y轴 ,此时1不在定义域内 ,与
“f(1)=-a/2”不符 ,故b、c不同时为0 ,因此 b^2 + 2(b + 2c)^2 > 0 ,
.所以 ,函数有两个零点
|x1-x2|·|x1-x2| = (x1 - x2)^2
= (x1 + x2)^2 - 4x1x2 = (b^2 - 4ac)/a^2 > 0 ,|x1-x2| > 0
[f(0) + f(2)]/2 = [c + (4a + 2b + c)]/2 = a/2 ,与f(1) = -a/2 异号 ,
故分别在区间(f(0),f(1))和(f(1),f(2))内存在点:x0、y0 ,使得这两点的一阶导数值为0 ,(0
设函数f(x)= ax^2+bx+c,且f(l)=-a/2 ,3a>2c>2b,求证:
设函数f(x)=ax^2+bx+c,且f(1)=-a/2,3a>2c>2b,求证(1)a>0,-3
设函数f(x)=ax^2+bx+c,且f(1)=-a/2,3a>2c>b 求证1)a>0,-3
设函数f(x)=ax^2+bx+c满足f(1)=-a/2,且满足3a>2c>2b,求证
设f(x)=3ax^2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0求证:a>0且-2
设函数f(x)=(ax^2+1)/(bx+c)是奇函数,a,b,c都是整数,且f(
设函数f(x)=ax^2+bx+c(a,b,c,∈R.已知f(1)=-a/2,3a>2c>2b,求证:a>0,且-3<b
设函数f(x)=ax²+bx+c,且f(1)=-a/2
设函数f(x)=ax^2+bx+c(a>0)且f(1)=-a/2(1)求证函数f(x)有两个零点
B组题:设函数f(x)=ax平方+1/bx+c是奇函数.其中a.b.c€N.且f(1)=2,f(2)>3
很急 设函数fx=ax²+bx+c,且f(1)=-a/2,3a>2c>2b,求证:
设函数f(x)=ax^2+bx+c((a≠0),满足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式f(-