x=2t+cost y=t+e^t 求dy/dx
x=2t+cost y=t+e^t 求dy/dx
x=(e^t)sint y=(e^t)cost 求d^2y/dx^2
设x=e^-t y=e^-2t 求dy/dx
设x=t^2+cost,y=1-sint,求dy/dx
参数方程x=(t-1)e^t,y=1-t^4,求dy/dx
设函数y=y(x)由x=1-e^t和y=t+e^-t确定,求dy/dx和d^2y/dx^2
设x=e'sin t,y=e'cos t,求dy/dx.
设函数的参数方程为 X=t+cost y=tlnt 求dy/dx
x=t,y=t平方,求dx\dy
设x=1+t^2、y=cost 求 dy/dx 和d^2y/dx^2 sint-tcost/4t^3 和 sint-tc
设x=3e^-t,y=2e^t,则dy/dx等于多少?
x=t^2+t y=ln(1+t) 求dy/dx