作业帮 > 数学 > 作业

立体几何已知四棱锥P——ABCD中,PA垂直平面ABC

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 11:45:35
立体几何已知四棱锥P——ABCD中,PA垂直平面ABC
已知四棱锥P——ABCD中,PA垂直平面ABCD,四边形ABCD是直角梯形,角ADC=90度.AD平行BC,AB垂直AC,AB=AC2,G是三角形APC的重心,E是PB的中点,F在BC上,CF=2FB    证FG平行平面PAB    
立体几何已知四棱锥P——ABCD中,PA垂直平面ABC
证明:在AC上找H点,使得CH=2AH,连FH、GH.连接CG,延长交PA于J.
因为G为三角形APC重心,所以CG/GJ=2且AJ=PJ.
因为CF/FB= CH/AH=2,所以FH平行于AB.又因为平面ABC中AB垂直AC,所以FH垂直于AC;
在三角形AJC中,CG/GJ=CH/AH=2,所以AJ平行于GH,即PA平行于GH.
因为PA垂直平面ABCD,所以PA垂直于AC,则GH垂直于AC(因为PA与GH平行).
所以AC垂直于GH和FH相交所成的平面FGH
又因为PA垂直于AC,AB垂直于AC,所以AC垂直于PA与AB相交所成的平面PAB.
因此,平面PAB平行于平面FGH,故平面FGH中的线段FG平行于平面PAB.