作业帮 > 数学 > 作业

如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:04:44
如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.

(1)求证:AF-BF=EF;
(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.
如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.
(1)证明:如图,∵正方形ABCD,
∴AB=AD,∠BAD=∠BAG+∠EAD=90°,
∵DE⊥AG,
∴∠AED=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
又∵BF∥DE,
∴∠AFB=∠AED=90°,
在△AED和△BFA中,


∠AED=∠AFB
∠ADE=∠BAF
AD=AB,
∴△AED≌△BFA(AAS),
∴BF=AE,
∵AF-AE=EF,
∴AF-BF=EF;

(2)如图,将△ABF绕A点旋转到△ADF′,使B与D重合,连接F′E,
根据题意知:∠FAF′=90°,DE=AF′=AF,
∴∠F′AE=∠AED=90°,即∠F′AE+∠AED=180°,
∴AF′∥ED,
∴四边形AEDF′为平行四边形,又∠AED=90°,
∴四边形AEDF′是矩形,
∵AD=3,
∴EF′=AD=3.