已知函数f(x)=ax²+bx+c(a≠0),且f(x)=x无实根,下列命题中:
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 18:55:58
已知函数f(x)=ax²+bx+c(a≠0),且f(x)=x无实根,下列命题中:
(1)方程f【f(x)】=x无实根
(2)若a>0,则不等式f【f(x)】>x对一切实数x都成立
(3)若a<0,则必存在实数x0,使f【f(x0)】>x
(4)若a+b+c=0,则不等式f【f(x)】<x对一切x都成立
关键是4不知道怎么算出来的
(1)方程f【f(x)】=x无实根
(2)若a>0,则不等式f【f(x)】>x对一切实数x都成立
(3)若a<0,则必存在实数x0,使f【f(x0)】>x
(4)若a+b+c=0,则不等式f【f(x)】<x对一切x都成立
关键是4不知道怎么算出来的
(1)、(2)、(4)正确,
(3)错误.
(4)的做法:
若a+b+c=0,则不等式f【f(x)】<x对一切x都成立
设F(x)=x
f(1)=a+b+c=0 F(1)=1 F(1)>f(1)
因为f(x)=x无实根,即 f(x)=F(x)无实根,也就是f(x)的图象与F(x)的图象没有交点,因此f(x)的图象上的点都在F(x)的图象的下方,即f(x)
(3)错误.
(4)的做法:
若a+b+c=0,则不等式f【f(x)】<x对一切x都成立
设F(x)=x
f(1)=a+b+c=0 F(1)=1 F(1)>f(1)
因为f(x)=x无实根,即 f(x)=F(x)无实根,也就是f(x)的图象与F(x)的图象没有交点,因此f(x)的图象上的点都在F(x)的图象的下方,即f(x)
已知函数f(x)=ax²+bx+c(a≠0),且f(x)=x无实根,下列命题中:
已知a,b为常数,且a≠0,f(x)=ax²+bx,f(2)=0,方程f(x)=x有两个相等的实根 求函数f(
已知函数f(x)=ax^2+bx+c(a不等于0),且f(x)=x没有实数根,那么f(f(x))=x是否有实根,说明理由
已知函数f(x)=ax²+bx+c (a>0 bc不等于0)
已知二次函数f(x)=ax²+bx+c(a≠0)满足条件f(—x+5)=f(x-3),f(2)=0,且方程f(
已知一次函数f(x)=ax+b,二次函数g(x)=ax²+bx+c,a>b>c且a+b+c=0.
已知a,b为常数,且a≠0,f(x)=ax^2;+bx,f(2)=0,方程f(x)=x有两个相等实根
已知函数f(x)=ax²+c/bx+c(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.
已知二次函数f(x)=ax²+bx+c 若对x①,x②∈R且x①<x②,f(x①)≠f(x②),方程f(x)=
已知函数f(x)=ax2+bx+c(a≠0),且f(x)=2x没有实数根,那么f(f(x))=4x的实根根数个数为(
:已知二次函数f(x)=ax^2+bx+c,且a>b>c,a+b+c=0.(1)求证:f(x)=0有两个不等的实根;(2
设函数f(x)=ax^2+bx+c((a≠0),满足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式f(-