证明2次函数f(x)=ax2+bx+c(a>0)在区间(-∞,-b/2a)上是增函数
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:44:29
证明2次函数f(x)=ax2+bx+c(a>0)在区间(-∞,-b/2a)上是增函数
如果你做到有一个步骤是a(x1+x2)+b>0那么我想知道这一步是怎么来的?
还有,做数学题是不是要通过长期的大量的做然后会建立起一个数学思维,而这个思维是不是对学数学很重要,你们觉得我说的对吗,不对请指教
如果你做到有一个步骤是a(x1+x2)+b>0那么我想知道这一步是怎么来的?
还有,做数学题是不是要通过长期的大量的做然后会建立起一个数学思维,而这个思维是不是对学数学很重要,你们觉得我说的对吗,不对请指教
证明2次函数f(x)=ax2+bx+c(a>0)在区间(-∞,-b/2a)上是增函数
5 - 离问题结束还有 14 天 23 小时
如果你做到有一个步骤是a(x1+x2)+b>0那么我想知道这一步是怎么来的?
问题补充:还有,我想问一下,做数学题是不是要通过长期的大量的做然后会建立起一个数学思维,而这个思维是不是对学数学很重要,你们觉得我说的对吗,不对请指教
回答:
【1】
方法一:用高二学到的求导法
令f'(x)=(ax^2+bx+c)'=2ax+b>0
则有x∈(-∞,-b/2a)上是增函数,简单吧?
方法二:最简单,最原始的定义
令x1,x2∈(-∞,-b/2a)x1
5 - 离问题结束还有 14 天 23 小时
如果你做到有一个步骤是a(x1+x2)+b>0那么我想知道这一步是怎么来的?
问题补充:还有,我想问一下,做数学题是不是要通过长期的大量的做然后会建立起一个数学思维,而这个思维是不是对学数学很重要,你们觉得我说的对吗,不对请指教
回答:
【1】
方法一:用高二学到的求导法
令f'(x)=(ax^2+bx+c)'=2ax+b>0
则有x∈(-∞,-b/2a)上是增函数,简单吧?
方法二:最简单,最原始的定义
令x1,x2∈(-∞,-b/2a)x1
证明2次函数f(x)=ax2+bx+c(a>0)在区间[-b/2a,+∞)上是增函数
证明2次函数f(x)=ax2+bx+c(a>0)在区间(-∞,-b/2a)上是增函数
证明二次函数f(x)=ax2+bx+c (a<0)在区间(-∞,-b/2a]上是增函数(用定义法证明)
证明二次函数f(x)=ax2+bx+c(a小于0)在(负无限大,—b/2a]上是增函数
证明二次函数f(x)=ax^2+bx+c (a<0)在区间(—∞,—b/2a〕上是增函数.
证明 1 二次函数f(x)=ax^2+bx+c a小于0 在区间(负无穷,-b/2a) 上是增函数
证明二次函数f(x)=ax的平方+bx+c(a小于0)在区间(负无穷大,-2a分之B]上是增函数.
证明二次函数f(x)=ax2+bx+c(a大于0)在(负无限大,—b/2a]上是减函数
证明:函数f(x)=ax²+bx+c(a>0)在[-b/2a,+∞]上是增函数
证明二次函数f(x)=ax2+bx+c(a
设函数f(x)=ax2+bx+c (a>0),且f(1)=-2分之a.设函数f(x)=ax2+bx+c (a>0)
设函数f(x)=ax2+bx+c (a>0)且f(1)=-a/2