已知抛物线y=x2+kx+2k-4,若抛物线与x轴交于A(x1,0),B(x2,0),与y轴交于点C(A为定点且点A在B
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 11:30:10
已知抛物线y=x2+kx+2k-4,若抛物线与x轴交于A(x1,0),B(x2,0),与y轴交于点C(A为定点且点A在B的左侧),且S△ABC=15.求k的值.
令y=0,有x2+kx+2k-4=0,
此一元二次方程根的判别式
△=k2-4•(2k-4)=k2-8k+16=(k-4)2,
∵无论k为什么实数,(k-4)2≥0,
方程x2+kx+2k-4=0都有解,
即抛物线总与x轴有交点.
由求根公式得x=
−k±|k−4|
2,
当k≥4时,x=
−k±(k−4)
2,x1=
−k+(k−4)
2=-2,x2=
−k−(k−4)
2=-k+2;
当k<4时,x=
−k±(4−k)
2,x1=
−k+(4−k)
2=-k+2,x2=
−k−(4−k)
2=-2.
即抛物线与x轴的交点分别为(-2,0)和(-k+2,0),
故点A(-2,0)是x轴上的定点.
当-2<-k+2,即k<4时,A点坐标为(-2,0),B为(-k+2,0).
即x1=-2,x2=-k+2.
由|x1|<|x2|得-k+2>2,解得k<0.
根据S△ABC=15,得
1
2AB•OC=15.
AB=-k+2-(-2)=4-k,
OC=|2k-4|=4-2k,
∴
1
2(4-k)(4-2k)=15,
化简整理得k2-6k-7=0,
解得k=7(舍去)或k=-1.
此一元二次方程根的判别式
△=k2-4•(2k-4)=k2-8k+16=(k-4)2,
∵无论k为什么实数,(k-4)2≥0,
方程x2+kx+2k-4=0都有解,
即抛物线总与x轴有交点.
由求根公式得x=
−k±|k−4|
2,
当k≥4时,x=
−k±(k−4)
2,x1=
−k+(k−4)
2=-2,x2=
−k−(k−4)
2=-k+2;
当k<4时,x=
−k±(4−k)
2,x1=
−k+(4−k)
2=-k+2,x2=
−k−(4−k)
2=-2.
即抛物线与x轴的交点分别为(-2,0)和(-k+2,0),
故点A(-2,0)是x轴上的定点.
当-2<-k+2,即k<4时,A点坐标为(-2,0),B为(-k+2,0).
即x1=-2,x2=-k+2.
由|x1|<|x2|得-k+2>2,解得k<0.
根据S△ABC=15,得
1
2AB•OC=15.
AB=-k+2-(-2)=4-k,
OC=|2k-4|=4-2k,
∴
1
2(4-k)(4-2k)=15,
化简整理得k2-6k-7=0,
解得k=7(舍去)或k=-1.
已知抛物线y=x2+kx+2k-4,若抛物线与x轴交于A(x1,0),B(x2,0),与y轴交于点C(A为定点且点A在B
已知抛物线y=-x2+(m-4)x+2m+4与x轴交于点A(x1,0)、B(x2,0)两点,与y轴交于点C,且x1<x2
已知抛物线y=ax^2 +bx+c 与X轴交于A(X1,0) B(X2,0) X1小于X2,与Y轴交于点C 抛物线顶点为
已知抛物线y=-2/3x2+bx+c与x轴交于不同的两点A(x1,0)和b(x2,0),与y轴交于点C,且x1,x2是方
已知抛物线y=-2/3x2+bx+c与x轴交于不同的两点A(x1,0)和b(x2,0),与y轴交于点C,且x1、x2是方
已知抛物线y=x2+ax+b交x轴于点a(x1,0)、b(x2,0),且x1
已知抛物线y=-x^2+kx+7-2k与x轴交于A(x1,0)、B(x2,0)两点,且线段AB的长为4,又图像与y轴负半
已知抛物线y等于负x的平方+(m-4)x+2m+4与X轴交于点A(X1,0)\B(X2,0)两点,与Y轴交于点C,且X1
已知抛物线y=(k-1)x²+2kx+k-1,若抛物线与x轴交于A、B两点,与y轴交于c点,且△ABC的面积为
(2011•新余二模)如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,定点B的坐标为(2,0)
已知抛物线y=ax²+bx+c(a≠0)与x轴交于点A(x1,0)和B(x2,0),x1<x2.
如图,已知抛物线y=-x2+bx+c与x轴交于点A(-2,0)、B(4,0),点C是这个抛物线上一点且点C在第一象限,点