已知函数f(x)=ax2+bx+c,f(0)=0,对任意实数x恒有f(1-x)=f(1+x)成立,方程f(x)有两个相等
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:05:25
已知函数f(x)=ax2+bx+c,f(0)=0,对任意实数x恒有f(1-x)=f(1+x)成立,方程f(x)有两个相等的实数根.
1)求f(x)
(2)是否存在实数m,n,使函数f(x)在[m,n]上的值域为[3m,3n]?为什么?
1)求f(x)
(2)是否存在实数m,n,使函数f(x)在[m,n]上的值域为[3m,3n]?为什么?
题目不全,方程不完整:方程f(x)=?
假设方程为:f(x)=x有两个相等的实数根
(1)f(0)=0
a*0^2+b*0+c=0
c=0
f(x)=ax^2+bx
=a(x+b/2a)^2-b^2/4a
f(1-x)=f(1+x):对称轴x=1
-b/2a=1
b=-2a
f(x)=x
ax^2+bx=x
ax^2+(b-1)x=0
有两个相等的实数根
Δ=0
(b-1)^2-4a*0=0
(b-1)^2=0
b=1
f(2)=f(0)=0
a*2^2+2b=0
4a+2*1=0
a=-1/2
解析式:f(x)=-1/2x^2+x
(2)f(x)=3x
-1/2x^2+x=3x
x^2+4x=0
x(x+4)=0
x1=-4
x2=0
当m=-4时,f(m)=-1/2(-4)^2-4
=-12
=3m
当n=0时,f(n)=-1/2*0^2+0
=0
=3n
∴存在这样的实数m、n,使函数f(x)在[m,n]上的值域为[3m,3n].
假设方程为:f(x)=x有两个相等的实数根
(1)f(0)=0
a*0^2+b*0+c=0
c=0
f(x)=ax^2+bx
=a(x+b/2a)^2-b^2/4a
f(1-x)=f(1+x):对称轴x=1
-b/2a=1
b=-2a
f(x)=x
ax^2+bx=x
ax^2+(b-1)x=0
有两个相等的实数根
Δ=0
(b-1)^2-4a*0=0
(b-1)^2=0
b=1
f(2)=f(0)=0
a*2^2+2b=0
4a+2*1=0
a=-1/2
解析式:f(x)=-1/2x^2+x
(2)f(x)=3x
-1/2x^2+x=3x
x^2+4x=0
x(x+4)=0
x1=-4
x2=0
当m=-4时,f(m)=-1/2(-4)^2-4
=-12
=3m
当n=0时,f(n)=-1/2*0^2+0
=0
=3n
∴存在这样的实数m、n,使函数f(x)在[m,n]上的值域为[3m,3n].
已知函数f(x)=ax2+bx+c,f(0)=0,对任意实数x恒有f(1-x)=f(1+x)成立,方程f(x)有两个相等
已知f(x)=ax2+bx+c,f(0)=0,对任意实数x恒有f(1-x)=f(1+x)成立,方程f(x)=x有两个相等
已知函数f(x)=ax2+bx+c,f(0)=0,对于任意实数x恒有f(1-x)=f(1+x)成立,方程f(x)=x有两
已知二次函数f(x)=ax2+bx+1(a>0),若f(-1)=0,且对任意实数x均有f(x)≥0成立.且F(x)=f(
已知二次函数f(x)=ax2+bx+c的导数f’(x)>0,对任意实数x有f’(x)≥0,则f(1)/ f’(0)的最小
已知函数f(x)=ax2+bx+c(a≠0),对任意实数x满足f(x+1)=f(1-x),且函数y=f(x)的零点有且只
已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立.求f(0)与f(1)的值.
已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立.求f(0)与f(1)的值
已知二次函数f(x)=ax2+bx+c的导数为f’(x).f’(0)>0,对任意实数x有f’(x)≥0,则f’(x)/f
已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(1
已知函数f(x)=ax平方+bx+c,f(0)=0,对于任一实数恒有f(1-x)=f(1+x)成立,方程f(x)=x有两
已知二次函数f(x)=ax^2+bx满足f(1+x)=f(1-x)且方程f(x)=x有两个相等实数,