已知函数f(x)=lg(ax-bx),a>1>b>0
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:27:18
已知函数f(x)=lg(ax-bx),a>1>b>0
(1)求f(x)的定义域;
(2)在函数f(x)的图象上是否存在不同的两点,使过这两点的直线平行于x轴;
(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.
(1)求f(x)的定义域;
(2)在函数f(x)的图象上是否存在不同的两点,使过这两点的直线平行于x轴;
(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.
(1)由ax-bx>0得(
a
b)x>1=(
a
b)0,
由于(
a
b)>1所以x>0,
即f(x)的定义域为(0,+∞)
(2)任取x1,x2∈(0,+∞),且x1<x2
f(x1)=lg(ax1−bx1),f(x2)=lg(ax2−bx2);
f(x1)-f(x2)=(ax1−bx1)−(ax2−bx2)=(ax1−ax2)+(bx2−bx1)
∵a>1>b>0,
∴y=ax在R上为增函数,y=bx在R上为减函数,
∴ax1−ax2<0,bx2−bx1<0
∴(ax1−bx1)−(ax2−bx2)<0,即(ax1−bx1)<(ax2−bx2)
又∵y=lgx在(0,+∞)上为增函数,
∴f(x1)<f(x2)
∴f(x)在(0,+∞)上为增函数.
所以任取x1≠x2则必有y1≠y2故函函数f(x)的图象L不存在不同的两点使过两点的直线平行于x轴.
(3)因为f(x)是增函数,所以当x∈(1,+∞)时,f(x)>f(1),
这样只需f(1)=lg(a-b)≥0,
即当a-b≥1时,f(x)在(1,+∞)上恒取正值.
a
b)x>1=(
a
b)0,
由于(
a
b)>1所以x>0,
即f(x)的定义域为(0,+∞)
(2)任取x1,x2∈(0,+∞),且x1<x2
f(x1)=lg(ax1−bx1),f(x2)=lg(ax2−bx2);
f(x1)-f(x2)=(ax1−bx1)−(ax2−bx2)=(ax1−ax2)+(bx2−bx1)
∵a>1>b>0,
∴y=ax在R上为增函数,y=bx在R上为减函数,
∴ax1−ax2<0,bx2−bx1<0
∴(ax1−bx1)−(ax2−bx2)<0,即(ax1−bx1)<(ax2−bx2)
又∵y=lgx在(0,+∞)上为增函数,
∴f(x1)<f(x2)
∴f(x)在(0,+∞)上为增函数.
所以任取x1≠x2则必有y1≠y2故函函数f(x)的图象L不存在不同的两点使过两点的直线平行于x轴.
(3)因为f(x)是增函数,所以当x∈(1,+∞)时,f(x)>f(1),
这样只需f(1)=lg(a-b)≥0,
即当a-b≥1时,f(x)在(1,+∞)上恒取正值.
已知函数f(x)=lg(ax-bx),a>1>b>0
已知函数f(x)=lg(ax-bx)(a>1>b>0),且a2=b2+1,则不等式f(x)>0的解集是______.
已知函数f(x)=ln(ax-bx)(a>1>b>0).
已知二次函数f(x)=ax²+bx+1(a>0).
已知函数f(x)=lg(ax-bx)(a>1,01,0
函数问题F(x)=lg(ax-bx) (a>1>b>0)
已知函数f(x)=ax^2-(a+3)x+b(a≥0,b>0),函数g(x)=lg(12-x^2+4x)的定义域为B.1
已知函数f(x)=ax^2+bx+c(a>0,b∈R,c属于R)
已知函数f(x)=ax²+bx+1(a≠0)和g(x)=(bx-a)/(ax+2b) (1)若f(x)为偶函数
已知函数f(x)=ax^2+bx+1(a,b为实数),x∈R,F(x)={f(x)(x>0)或-f(x)(x<0)}
已知函数f(x)=lg(ax的平方—bx的平方)(a大于1大于b大于0),(1)求y=f(x)的定义域
已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)={f(x),x>0 -f(x),x