已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y^=2px(p﹥0)上的两个动点,O是坐标原点,向量O
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:55:56
已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y^=2px(p﹥0)上的两个动点,O是坐标原点,向量OA,OB满足∣OA+OB∣=∣OA-OB∣,设圆C的方程为x^+y^-(x1+x2)x-(y1+y2)y=0.
(注:OA,OB上全都有箭头)
1、证明线段AB的圆C的直径;2、当圆C的圆心到直线X-2Y=0的距离的最小值为(2根号下5)/5时,求P的值.
第一题已证明
第二小题 请问为什么在OA垂直于OB的时候取到最小值?
没有人回答么...QAQ
(注:OA,OB上全都有箭头)
1、证明线段AB的圆C的直径;2、当圆C的圆心到直线X-2Y=0的距离的最小值为(2根号下5)/5时,求P的值.
第一题已证明
第二小题 请问为什么在OA垂直于OB的时候取到最小值?
没有人回答么...QAQ
OA与OB总是垂直的,这是题目条件|OA+OB| = |OA-OB|的推论.
因为其平方得OA²+2OA·OB+OB² = OA²-2OA·OB+OB²,得OA·OB = 0,即OA与OB垂直.
由此可知AB中点是Rt△AOB的外接圆圆心.
而易见⊙C 以AB中点为圆心并经过O点,由此⊙C就是Rt△AOB的外接圆,故AB是⊙C的直径.
即证明了第一问.
第二问由A,B在抛物线y² = 2px上,有y₁² = 2px₁,y₂² = 2px₂,相乘得(y₁y₂)² = 4p²x₁x₂.
又OA·OB = 0即x₁x₂+y₁y₂ = 0,代入得(y₁y₂)² = -4p²y₁y₂.
而y₁y₂ = -x₁x₂ ≠ 0,故y₁y₂ = -4p².
于是((y₁+y₂)/2)² = (y₁²+y₂²+2y₁y₂)/4 = p(x₁+x₂)/2-2p²,
即圆心轨迹方程为y² = px-2p².
可求得其斜率为1/2的切线的切点为(3p,p),切线方程2y = x-p.
其与2y = x的距离为p/√5.
可知当且仅当p = 2时距离最小值为2√5/5.
因为其平方得OA²+2OA·OB+OB² = OA²-2OA·OB+OB²,得OA·OB = 0,即OA与OB垂直.
由此可知AB中点是Rt△AOB的外接圆圆心.
而易见⊙C 以AB中点为圆心并经过O点,由此⊙C就是Rt△AOB的外接圆,故AB是⊙C的直径.
即证明了第一问.
第二问由A,B在抛物线y² = 2px上,有y₁² = 2px₁,y₂² = 2px₂,相乘得(y₁y₂)² = 4p²x₁x₂.
又OA·OB = 0即x₁x₂+y₁y₂ = 0,代入得(y₁y₂)² = -4p²y₁y₂.
而y₁y₂ = -x₁x₂ ≠ 0,故y₁y₂ = -4p².
于是((y₁+y₂)/2)² = (y₁²+y₂²+2y₁y₂)/4 = p(x₁+x₂)/2-2p²,
即圆心轨迹方程为y² = px-2p².
可求得其斜率为1/2的切线的切点为(3p,p),切线方程2y = x-p.
其与2y = x的距离为p/√5.
可知当且仅当p = 2时距离最小值为2√5/5.
已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y^=2px(p﹥0)上的两个动点,O是坐标原点,向量O
已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y2=4x上的两个动点,O是坐标原点,向量 OA ,OB
已知点A(x1,y1),B(x2,y2)(x1x2≠0)是二次函数y=(1/2p)*x^2(p>0)上的两个动点,O是坐
已知点A(x1,y1)、B(x2,y2)是圆C1:(x-1)²+y²=4上的两个动点,O是坐标原点,
已知A(x1,y1),B(x2,y2)是抛物线y²=2px(p>0)上的两点,满足OA⊥OB,O为坐标原点,求
已知A(x1,y1)B(x2,y2)是椭圆C:x^2/9+y^2/4=1上不同的两个点,O为坐标原点 1.若向量OA+α
已知AB是抛物线y^2=2px(p>0)的焦点弦,为抛物线焦点,点A(X1,Y1),B(X2,Y2).求证:
已知A(x1,y1)、B(x2,y2)是椭圆x^2/a^2+y^2/b^2=1 (a>b>0)上的两个点,O为原点,且O
已知点A,B是抛物线y²=2px(p>0)上的任意两点,O为坐标原点,若OA向量ob向量≥﹣1恒成立,则抛物线
已知抛物线y^2=2px(p>0)的焦点弦AB的两端点为A(x1,y1),B(x2,y2),式子y1y2/x1x2的值等
已知抛物线y^2=2px(p>0)的焦点弦AB的两端点为A(x1,y1),B(x2,y2) 求证
A,B是抛物线y^2=2px(p>0)上的两个动点,O为坐标原点,直线OA,OB倾斜角之和为135°.求证直线AB过定点