抛物线有关焦半径的结论
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 16:54:48
抛物线有关焦半径的结论
5个要证明
抛物线y方=2px,p>0 F为焦点,焦半径AB,准线与X轴交于M,O为坐标原点
证:(1)角AMF=角BMF
(2)AO延长线与准线交于N点,则BN平行X轴
5个要证明
抛物线y方=2px,p>0 F为焦点,焦半径AB,准线与X轴交于M,O为坐标原点
证:(1)角AMF=角BMF
(2)AO延长线与准线交于N点,则BN平行X轴
我只知道焦点弦的5条性质
y^2=2Px 过焦点F的直线交抛物线于A、B
(1)|AB|=x1+x2+P=2P/sin^2(a)[a为直线AB的倾斜角]
(2)y1y2=-P^2 x1x2=P^2/4
(3)1/|FA|+1/|FB|=2/P
(4)以|AB|为直径的圆与抛物线的准线相切
(5)焦半径公式:|AF|=x1+P/2
证明:设A(x1,y1) B(x2,y2)
(1)|AB|=|AF|+|BF|
=x1-(-P/2)+x2-(-P/2)
=x1+x2+P
直线AB的斜率为tan(a)
则直线AB的方程为ycos(a)=sin(a)(x-P/2)
与抛物线y^2=2Px联立 消去y 得
sin^2(a)x^2-[2cos^2(a)+sin^2(a)]Px+P^2/4=0
x1+x2=P[2cos^2(a)+sin^2(a)]/sin^2(a)
∴|AB|=x1+x2+P
={P[2cos^2(a)+sin^2(a)]+P[sin^2(a)]}/sin^2(a)
=2P/sin^2(a)
(2)设AB方程为x=ky+P/2 与抛物线方程y^2=2Px联立得
y^2-2kPy-P^2=0
得y1y2=-P^2
y1^2*y2^2=P^4=2Px1*2Px2=4P^2*x1x2
得x1x2=P^2/4
(3)1/|FA|+1/|FB|
=1/(x1+P/2)+1/(x2+P/2)
=(x1+x2+P)/(x1+P/2)(x2+P/2)
=(x1+x2+P)/[x1x2+(x1+x2)P/2+p^2/4]
=(x1+x2+P)/[P^2/2+(x1+x2)P/2]=2/P
(4)圆心到准线的距离 d=(x1+x2)/2+P/2=|AB|/2
(5)由抛物线定义直接得
补充:
(1)设直线AB方程为y=k(x-P/2)
1/kAM=(x1+P/2)/y1=(y1^2/2P+P/2)/y1=(y1^2+P^2)/2Py1
同理可得 kBM=(y2^2+P^2)/2Py2
1/kAM+1/kBM=[(y1+y2)y1y2+(y1+y2)P^2]/2Py1y2
∵y1+y2=2P/k y1y2=-P^2
∴1/kAM+1/kBM=(y1+y2)(y1y2+P^2)/2Py1y2=0
即kAM=-kBM 角AMF=角BMF
(2)即证yN=yB
设A(y1^2/2P,y1)
则直线OA可以写成 y=(2P/y1)*x
当x=-P/2时代人 得yN=-P^2/y1
∵y1y2=-P^2
∴yB=-P^2/y1=yN 得证
y^2=2Px 过焦点F的直线交抛物线于A、B
(1)|AB|=x1+x2+P=2P/sin^2(a)[a为直线AB的倾斜角]
(2)y1y2=-P^2 x1x2=P^2/4
(3)1/|FA|+1/|FB|=2/P
(4)以|AB|为直径的圆与抛物线的准线相切
(5)焦半径公式:|AF|=x1+P/2
证明:设A(x1,y1) B(x2,y2)
(1)|AB|=|AF|+|BF|
=x1-(-P/2)+x2-(-P/2)
=x1+x2+P
直线AB的斜率为tan(a)
则直线AB的方程为ycos(a)=sin(a)(x-P/2)
与抛物线y^2=2Px联立 消去y 得
sin^2(a)x^2-[2cos^2(a)+sin^2(a)]Px+P^2/4=0
x1+x2=P[2cos^2(a)+sin^2(a)]/sin^2(a)
∴|AB|=x1+x2+P
={P[2cos^2(a)+sin^2(a)]+P[sin^2(a)]}/sin^2(a)
=2P/sin^2(a)
(2)设AB方程为x=ky+P/2 与抛物线方程y^2=2Px联立得
y^2-2kPy-P^2=0
得y1y2=-P^2
y1^2*y2^2=P^4=2Px1*2Px2=4P^2*x1x2
得x1x2=P^2/4
(3)1/|FA|+1/|FB|
=1/(x1+P/2)+1/(x2+P/2)
=(x1+x2+P)/(x1+P/2)(x2+P/2)
=(x1+x2+P)/[x1x2+(x1+x2)P/2+p^2/4]
=(x1+x2+P)/[P^2/2+(x1+x2)P/2]=2/P
(4)圆心到准线的距离 d=(x1+x2)/2+P/2=|AB|/2
(5)由抛物线定义直接得
补充:
(1)设直线AB方程为y=k(x-P/2)
1/kAM=(x1+P/2)/y1=(y1^2/2P+P/2)/y1=(y1^2+P^2)/2Py1
同理可得 kBM=(y2^2+P^2)/2Py2
1/kAM+1/kBM=[(y1+y2)y1y2+(y1+y2)P^2]/2Py1y2
∵y1+y2=2P/k y1y2=-P^2
∴1/kAM+1/kBM=(y1+y2)(y1y2+P^2)/2Py1y2=0
即kAM=-kBM 角AMF=角BMF
(2)即证yN=yB
设A(y1^2/2P,y1)
则直线OA可以写成 y=(2P/y1)*x
当x=-P/2时代人 得yN=-P^2/y1
∵y1y2=-P^2
∴yB=-P^2/y1=yN 得证