作业帮 > 数学 > 作业

已知在三角形ABC中,AB=AC,∠A=100°,CD是∠acb的平分线 求证:BC=CD+AD

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 07:11:48
已知在三角形ABC中,AB=AC,∠A=100°,CD是∠acb的平分线 求证:BC=CD+AD
已知在三角形ABC中,AB=AC,∠A=100°,CD是∠acb的平分线 求证:BC=CD+AD
∵AB=AC,∠A=100°
∴∠ABC=∠ACB=(180°-∠A)/2=40°
∵CD平分∠ACB
∴∠ACD=∠BCD=1/2∠ACB=20°
∴∠ADC=180°-∠A-∠ACD=180°-100°-20°=60°
延长CD使CE=BC,连接BE
∴∠CEB=∠CBE=(180°-∠BCD)/2=80°
∴∠EBD=∠CBE-∠ABC=80°-40°=40°
∴∠EBD=∠ABC
在CB上截取CF=AC,连接DF
∵CD=CD
∠ACD=∠FCD=20°
∴△ACD≌△FCD(SAS)
∴AD=DF
∠DFC=∠A=100°
∴∠BDF=∠DFC-∠ABC=100°-40°=60°
∵∠EDB=∠ADC=60°
∴∠EDB=∠BDF
∵∠EBD=∠FBD=40°
BD=BD
∴△BDE≌△BDF(ASA)
∴DE=DF=AD
∵BC=CE=DE+CD
∴BC=AD+CD
再问: �ܻ���ͼ��
再答:
再问: ��˵��AD=DF��=ED��� ED�ֵ���BF ��ô DF=BF �Dz����� ����������� ��ô��DBFӦ��=��BDF ��ѽ Ϊʲô��DBF�١�BDF �Dz��������� �ܻش�����
再答: BE=BF ED��BF