x→∞,求极限[∫arctan(t)dt]/sin(x),其中,分子上面的积分限为[0,x]
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:01:21
x→∞,求极限[∫arctan(t)dt]/sin(x),其中,分子上面的积分限为[0,x]
∫arctan(t)dt=tarctant-∫td(arctant)=tarctant-∫t/(1+t^2)dt
=tarctant-∫t/(1+t^2)dt=tarctant-(1/2)×∫d(1+t^2)/(1+t^2)=tarctant-(1/2)ln(1+t^2)
(0,x)∫arctan(t)dt=(0,x)[tarctant-(1/2)ln(1+t^2)]=xarctanx-(1/2)ln(1+x^2)
故极限为lim [xarctanx-(1/2)ln(1+x^2)]/sinx
又lim [xarctanx-(1/2)ln(1+x^2)]=xarctanx[1-(1/2)ln(1+x^2)/(xarctanx)]
又lim ln(1+x^2)/(xarctanx)]=lim[2x/(1+x^2)]/[arctanx+x/(1+x^2)]
=lim 2x/[(x^2+1)arctanx+x]=lim 2/(2xarctanx+2)=0
所以lim [xarctanx-(1/2)ln(1+x^2)]/sinx
=lim xarctanx/sinx
x→+∞,原式=lim x(π/2)/sinx,sinx不定,故极限不存在
因而极限不存在,你检查一下是不是题抄错了.
应该是x→0吧?否则不可能有极限的.
附上x→0
洛必达法则
lim (∫arctantdt]/sinx)=lim arctanx/cosx=0
=tarctant-∫t/(1+t^2)dt=tarctant-(1/2)×∫d(1+t^2)/(1+t^2)=tarctant-(1/2)ln(1+t^2)
(0,x)∫arctan(t)dt=(0,x)[tarctant-(1/2)ln(1+t^2)]=xarctanx-(1/2)ln(1+x^2)
故极限为lim [xarctanx-(1/2)ln(1+x^2)]/sinx
又lim [xarctanx-(1/2)ln(1+x^2)]=xarctanx[1-(1/2)ln(1+x^2)/(xarctanx)]
又lim ln(1+x^2)/(xarctanx)]=lim[2x/(1+x^2)]/[arctanx+x/(1+x^2)]
=lim 2x/[(x^2+1)arctanx+x]=lim 2/(2xarctanx+2)=0
所以lim [xarctanx-(1/2)ln(1+x^2)]/sinx
=lim xarctanx/sinx
x→+∞,原式=lim x(π/2)/sinx,sinx不定,故极限不存在
因而极限不存在,你检查一下是不是题抄错了.
应该是x→0吧?否则不可能有极限的.
附上x→0
洛必达法则
lim (∫arctantdt]/sinx)=lim arctanx/cosx=0
x→∞,求极限[∫arctan(t)dt]/sin(x),其中,分子上面的积分限为[0,x]
limx趋向0(∫arctan t dt)/x^2 上限x下限0 求极限
求极限x-->0 lim [∫cos (t^2) dt] /x 其中不定积分为 0--->x
高等数学的极限lim(x趋于无穷){e^(-x^2)∫t^2e^(t^2)dt}/x的值为( ) ,其中积分区间为(0,
当x趋于无穷时,求极限lim[∫(t^2)*(e^((t^2)-(x^2)))dt]/x,其中积分上限是x,积分下限是0
求区间为【0,x】sin(ln t)dt 的定积分f(x),f(x)的导数.
求当x趋近于0的极限 cost^2dt/x 其中cost^2dt是上线x下线为0的定积分
求极限 lim x→0 ∫sin t^2 dt / x^3 从2x积到0
求limx→0 (定积分∫上限x下限0 sin^2 t/t dt) /x^2
求极限 [ln(1+t)dt在积分下限为0上限为x]/x^2 x趋向于0
积分上下限如何确定的例:d/dx∫sin(x-t)^2dt,其中积分的下限为0,上线为x.设u=x-t,则上式=d/dx
求定积分d∫(x-t)f'(t)dt/dx 积分上限为x 积分下限为0