设0≤θ≤2π,已知两个向量OP1=(cosθ,sinθ),OP2 = (2+sinθ,2-cosθ ),则向量P1P2
设0≤θ≤2π,已知两个向量OP1=(cosθ,sinθ),OP2 = (2+sinθ,2-cosθ ),则向量P1P2
设0≤θ≤2π,已知两个向量OP1 = (cosθ,sinθ),OP2 = (2+sinθ,2-cosθ ),则向量P1
设0≤θ≤2π,已知两个向量OP1=(cosθ,sinθ),OP2=(2+sinθ,2-cosθ),则向量P1P2长度的
设0≤θ<2π,已知两个向量OP1=(cosθ,sinθ),OP2=(2+sinθ,2-cosθ),则向量P1P2长度的
1、设θ∈[0,2π),向量OP1=(cosθ,sinθ),向量OP2=(sinθ,2sinθ),则向量P1P2的模的最
设0≤θ≤2π,已知两个向量OP=(cosθ,sinθ),向量OP'=(2+sinθ,2-cosθ),则向量PP'长度的
已知向量a=(cos(-θ),sin(-θ)),向量b=(cos(π/2-θ),sin(π/2-θ)),
已知向量OP=(sinθ,0),向量OQ=(1,cosθ),-π/2
已知向量a=(sinθ,cosθ-2sinθ),向量b=(1,2)
A属于[0,2π],已知向量OP1=(COSA,SINA)向量OP2=(3-COSA,4-sinA)则|→p1p2|的范
向量OP₁=(cosθ,sinθ),向量OP₂=(2+sinθ,2-cosθ),已知π/4≤θ≤
已知向量a=(sinθ,1)向量b=(1,cosθ),-2/π