f(x)在x=0的领域内有二阶导数,又x→0时lim((sinx+xf(x))\x3)=1/2,求f(0),f'(0),
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:04:45
f(x)在x=0的领域内有二阶导数,又x→0时lim((sinx+xf(x))\x3)=1/2,求f(0),f'(0),f''(0)
根据洛笔答法则,
lim((sinx+xf(x))/x3)=lim((cosx+f(x)+x·f'(x))/3x²)
若x→0时这个极限存在,则必有lim cosx+f(x)+x·f'(x)=0
则cos0+f(0)=0
f(0)=-1
再进一步用洛笔答法则得
lim((cosx+f(x)+x·f'(x))/3x²)
=lim((-sinx+2f'(x)+x·f''(x))/6x)
若x→0时这个极限存在,则必有lim -sinx+2f'(x)+x·f''(x)=0
则f'(0)=0.
则
lim((-sinx+2f'(x)+x·f''(x))/6x)
=(1/6) [lim(-sinx /x) +2lim f'(x)/x +lim f''(x)]
=(1/6) [-1 +2lim (f'(x)-f'(0))/(x-0) + f''(0)]
=(1/6) [-1 +2f''(0) + f''(0)]
=(1/6) [-1 +3f''(0)]
即(1/6) [-1 +3f''(0)]=1/2.
则f''(0)=4/3
lim((sinx+xf(x))/x3)=lim((cosx+f(x)+x·f'(x))/3x²)
若x→0时这个极限存在,则必有lim cosx+f(x)+x·f'(x)=0
则cos0+f(0)=0
f(0)=-1
再进一步用洛笔答法则得
lim((cosx+f(x)+x·f'(x))/3x²)
=lim((-sinx+2f'(x)+x·f''(x))/6x)
若x→0时这个极限存在,则必有lim -sinx+2f'(x)+x·f''(x)=0
则f'(0)=0.
则
lim((-sinx+2f'(x)+x·f''(x))/6x)
=(1/6) [lim(-sinx /x) +2lim f'(x)/x +lim f''(x)]
=(1/6) [-1 +2lim (f'(x)-f'(0))/(x-0) + f''(0)]
=(1/6) [-1 +2f''(0) + f''(0)]
=(1/6) [-1 +3f''(0)]
即(1/6) [-1 +3f''(0)]=1/2.
则f''(0)=4/3
f(x)在x=0的领域内有二阶导数,又x→0时lim((sinx+xf(x))\x3)=1/2,求f(0),f'(0),
f(x)在x=0的领域内有二阶导数,又x→0时lim((sinx+xf(x))\x3)=0,求f(0),f'(0),f'
求lim(x→0)[(xf'(x))/(2f(x))]^(1/x),其中f(x)在x=0点某邻域内有三阶连续导数,f(0
已知lim(x→0)(sinx+xf(x))/x^3=1/3,求f(0),f'(0),f"(0)
一道极限题目lim(x→0)sinx+xf(x)/x^3=1/2 求f(0),f`(0),f``(0)
设 f(x)在x=0存在二阶导数,lim(x→0)[xf(x)-ln(x+1)]/x^3求f(0)f'(0)f''(0)
x趋于0,lim x-o ( sin6x+xf(x))/x3=0 ,lim x-o (6+f(x))/x2=?
设f(x)在x=0处存在二阶导数,且lim(x→0)(xf(x)-ln(1+x))/x^3=1/3求f(0),f'(0)
f(x)在x=a处有二阶导数,求证x趋于0时lim(((f(a+x)-f(a)/x}-f‘(a))/x=1/2f''(a
当x→0时,lim[ln(1+2x)+xf(x)]/x^2=2,求lim[2+f(x)]/x 要求详细解释
当x→0时,lim[ln(1+2x)+xf(x)]/x^2=2,求lim[2+f(x)]/x
当x→0时,lim[ln(1-2x)+xf(x)]/x^2=4,求lim[f(x-2)]/x