验证参数方程{x=e^t*sint y=e^t*cost 所确定的函数满足关系式(d^2y/dx^2)*(x+y)^2=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:49:22
验证参数方程{x=e^t*sint y=e^t*cost 所确定的函数满足关系式(d^2y/dx^2)*(x+y)^2=2(x*dy/dx-y)
这两个式子我怎么算都不相等
这两个式子我怎么算都不相等
x=e^t*sint y=e^t*cost
所以dx/dt=e^t*(sint +cost) ,dy/dt=e^t*(cost-sint)
故dy/dx=(dy/dt) / (dx/dt)= (cost-sint) / (sint +cost)
而
d^2y/dx^2
=d(dy/dx) /dt * dt/dx
=d[(cost-sint) / (sint +cost)] /dt * dt/dx
= [(-sint-cost)*(sint+cost) -(cost-sint)*(cost-sint)] /(sint+cost)^2 * 1/[e^t*(sint +cost)]
= (-1-2sint*cost -1+2sint*cost)/[e^t*(sint+cost)^3]
= -2 / [e^t*(sint+cost)^3]
所以
(d^2y/dx^2)*(x+y)^2
= -2 / [e^t*(sint+cost)^3] * (e^t*sint +e^t*cost)^2
= -2e^t /(sint+cost)
而
2(x*dy/dx-y)
=2[e^t*sint * (cost-sint) / (sint +cost) - e^t*cost]
=2e^t *[sint * (cost-sint) -cost*(sint +cost)] /(sint +cost)
=2e^t *[sint*cost -(sint)^2 -cost*sint -(cost)^2] / (sint +cost)
= -2e^t /(sint+cost)
故
(d^2y/dx^2)*(x+y)^2 =2(x*dy/dx-y) = -2e^t /(sint+cost)
所以这两个式子是相等的
所以dx/dt=e^t*(sint +cost) ,dy/dt=e^t*(cost-sint)
故dy/dx=(dy/dt) / (dx/dt)= (cost-sint) / (sint +cost)
而
d^2y/dx^2
=d(dy/dx) /dt * dt/dx
=d[(cost-sint) / (sint +cost)] /dt * dt/dx
= [(-sint-cost)*(sint+cost) -(cost-sint)*(cost-sint)] /(sint+cost)^2 * 1/[e^t*(sint +cost)]
= (-1-2sint*cost -1+2sint*cost)/[e^t*(sint+cost)^3]
= -2 / [e^t*(sint+cost)^3]
所以
(d^2y/dx^2)*(x+y)^2
= -2 / [e^t*(sint+cost)^3] * (e^t*sint +e^t*cost)^2
= -2e^t /(sint+cost)
而
2(x*dy/dx-y)
=2[e^t*sint * (cost-sint) / (sint +cost) - e^t*cost]
=2e^t *[sint * (cost-sint) -cost*(sint +cost)] /(sint +cost)
=2e^t *[sint*cost -(sint)^2 -cost*sint -(cost)^2] / (sint +cost)
= -2e^t /(sint+cost)
故
(d^2y/dx^2)*(x+y)^2 =2(x*dy/dx-y) = -2e^t /(sint+cost)
所以这两个式子是相等的
验证参数方程{x=e^t*sint y=e^t*cost 所确定的函数满足关系式(d^2y/dx^2)*(x+y)^2=
x=(e^t)sint y=(e^t)cost 求d^2y/dx^2
已知函数y=y﹙x﹚由参数方程 x- eˆx sint +1=0,y=t³+2t 所确定,求dy/d
参数方程x=3e^-t y=2e^t所确定的函数的二阶导数
求摆线的参数方程x=a(t-sint) 和 y=a(1-cost)所确定的函数y=y(x)的
参数方程:x=5(t-sint) y=5(1-cost) 求d^2y/dx^2 dy/dx我会求
求微分的题目一道,x=e^(-t)sint,y=e^tcost,求 d^2y/dx^2
设函数y=y(x)由x=1-e^t和y=t+e^-t确定,求dy/dx和d^2y/dx^2
L为参数方程x=cost+tsint y=sint-tcost 求曲线积分x+e^xdy+(y+ye^x)dx t为0到
求x=cost*e^t,y=sint*e^t确定的函数y=y(X)的一阶和二阶导数
怎么理解参数求导呢?例如这题:x=a(t-sint)和y=a(1-cost) 所确定的函数为y=y(x),则在t=π/2
参数方程x=cost+sint,y=sint*cost*(t为参数)的普通方程是多少