已知1/n(n+1)=A/n+B/n+1求AB的值 再根据类比法计算 1/1*2+1/2*3+1/3*4+^+1/99*
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 09:57:20
已知1/n(n+1)=A/n+B/n+1求AB的值 再根据类比法计算 1/1*2+1/2*3+1/3*4+^+1/99*100
1/n(n+1)=[(n+1)-n]/[n(n+1)]=(n+1)/[n(n+1)]-n/[n(n+1)]=1/n-1/(n+1)
又∵ 1/n(n+1)=A/n+B/(n+1)
∴ A=1,B=-1
∴ 1/[n(n+1)]=1/n-1/(n+1)
∴ 1/1*2+1/2*3+1/3*4+^+1/99*100
=1-1/2+1/2-1/3+1/3-1/4+.+1/99-1/100
=1-1/100
=99/100
再问: 1/a-1+1/(a-1)(a-2)+1/(a-2)(a-3)+^+1/(a-9)(a-10)? 急需
再答: 一样啊 1/a-1+1/(a-1)(a-2)+1/(a-2)(a-3)+^+1/(a-9)(a-10) =1/(a-1)+[1/(a-2)-1/(a-1)]+[1/(a-3)-1/(a-2)]+...............+[1/(a-10)-1/(a-9)] =1/(a-10)
又∵ 1/n(n+1)=A/n+B/(n+1)
∴ A=1,B=-1
∴ 1/[n(n+1)]=1/n-1/(n+1)
∴ 1/1*2+1/2*3+1/3*4+^+1/99*100
=1-1/2+1/2-1/3+1/3-1/4+.+1/99-1/100
=1-1/100
=99/100
再问: 1/a-1+1/(a-1)(a-2)+1/(a-2)(a-3)+^+1/(a-9)(a-10)? 急需
再答: 一样啊 1/a-1+1/(a-1)(a-2)+1/(a-2)(a-3)+^+1/(a-9)(a-10) =1/(a-1)+[1/(a-2)-1/(a-1)]+[1/(a-3)-1/(a-2)]+...............+[1/(a-10)-1/(a-9)] =1/(a-10)
已知1/n(n+1)=A/n+B/n+1求AB的值 再根据类比法计算 1/1*2+1/2*3+1/3*4+^+1/99*
已知1/n^2+3n=A/n+B/n+3,求ab?
a^(n+1)b^n-4a^(n+2)+3ab^n-12a^2
已知Un=a^n+a^(n-1)b+a^(n-2)b^2+...+ab^(n-1)+b^n(n∈N*,a>0,b>0),
已知:1/n(n+1)=A/n + B/(n+1) 求A,B的值
已知1+2+3+...+n=m.求代数式(a^n乘b)(a^n-1乘b^2)(a^n-2乘b^3)…(ab^n)的值
已知:lim (n→∞) [(n^2+n)/(n+1)-an-b]=1 ,求a,b的值
若1+2+3+...+n=x,求(ab^n)(a^2 b^n-1).(a^n-1b^2)(a^nb)的值.
已知n为大于1的自然数,计算b^3n-1c^3/a^2n+1 *a^2n/b^3n-2
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
已知lim[(an^2+5n-2)/(3n+1)-n]=b,求a,b的值
已知lim((an2+5n-2)/(3n+1) -n)=b 求a b的值