作业帮 > 数学 > 作业

如图所示,ABCD为正方形.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:40:16
如图所示,ABCD为正方形.

(1)如图1,点P为△ABC的内心,问:DP与DA有何数量关系?证明你的结论.
(2)如图2,若点E在CB边上(不与点C、B重合),点F在BA的延长线上,AF=CE,点P为△FBE的内心,则DP与DF有何数量关系?证明你的结论.
(3)如图3,若点E在CB延长线上(不与点B重合),点F在BA的延长线上,AF=CE,点P是△FEB中与∠FEB、∠FBE相邻的两个外角平分线的交点,完成图3,判断DP与DF之间的数量关系(直接写出结论,不证明).
如图所示,ABCD为正方形.
(1)DP=DA,
证明:连接AP,BP,
∵点P是△ABC内心,
∴∠BAP=∠CAP,
∵四边形ABCD是正方形,
∴∠ABP=∠CBP=45°,
∴P在对角线BD上,
∴∠DPA=∠DBA+∠BAP=45°+∠BAP,∠DAP=∠DAC+∠CAP=45°+∠CAP,
∴∠DAP=∠DPA,
∴DP=DA.
(2)DP=DF,
证明:连接DE,PB,PF,
∵四边形ABCD是正方形,
∴AD=CD,∠C=∠FAD=∠ADC=∠ABC=90°,
在△ECD是△FAD中,

CD=AD
∠C=∠FAD
CE=AF,
∴△ECD≌△FAD,
∴DF=DE,∠FDA=∠CDE,
∴∠ADC=∠CDE+∠ADE=∠FDA+∠ADE=∠FDE=90°,
∴∠DFE=∠DEF=45°,
∵P在△EBF的内心上,
∴∠BFP=∠EFP,∠ABP=∠CBP=45°,
∴P在BD上,
∴∠DPF=∠DBA+∠BFP=45°+∠BFP,
∴∠DFP=∠DFE+∠EFP=45°+∠EFP,
∴∠DPF=∠DFP,
∴DP=DF.
(3)DP=DF,如图,
证明:∵四边形ABCD是正方形,
∴∠MBE=90°,
∵BP平分∠MBE,
∴∠EBP=45°,
由(2)知:∠FED=45°,
∵EP平分∠NEB,
∴∠BEP=∠NEP,
∵∠P=180°-∠EBP-∠BEP=180°-45°-∠BEP,∠DEP=180°-∠FED-∠PEN=180°-45°-∠NEP,
∴∠P=∠DEP,
∴DE=DP,
∵DE=DF,
∴DP=DF.