定义域在(-1,1)上的函数f(x),满足条件①对任意x,y∈(-1,1)都有f(x)+f(y)=f(x+y/1+xy)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 23:50:42
定义域在(-1,1)上的函数f(x),满足条件①对任意x,y∈(-1,1)都有f(x)+f(y)=f(x+y/1+xy)②当x∈(-1,0)时,f(x)>0,求:(1)判断f(x)在(0,1)上的单调性并说明理由;(2)若f(1/5)= -1/2,试求f(1/2)-f(1/11)-f(1/19)的值.
1.由题给条件可知:f(x)+f(-x)=f(x-x/1+xx)=0
得f(x)=-f(-x) ……(公式a)
当x∈(0,1)时,显然 -x∈(-1,0),所以,由题意,知:f(-x)>0,
这时有:f(x)=-f(-x)
再问: 第二小问中为什么 2f(1/5)=-1 呢?
再答: 题给条件:f(1/5)= -1/2,所以,2f(1/5)=-1
得f(x)=-f(-x) ……(公式a)
当x∈(0,1)时,显然 -x∈(-1,0),所以,由题意,知:f(-x)>0,
这时有:f(x)=-f(-x)
再问: 第二小问中为什么 2f(1/5)=-1 呢?
再答: 题给条件:f(1/5)= -1/2,所以,2f(1/5)=-1
定义域在(-1,1)上的函数f(x),满足条件①对任意x,y∈(-1,1)都有f(x)+f(y)=f(x+y/1+xy)
已知定义在R+上的函数f(x)同时满足下列三个条件:①f(3)=-1;②对任意x、y∈R+都有f(xy)=f(x)+f(
定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1),都有f(x)+f(y)=f((x+y)/(1+xy
已知定义在R+上的函数f(x)同时满足如下三个条件:(1)对任意x,y∈R+都有f(x*y)=f(x)+f(y);(2)
定义在R+上的函数f(x),满足条件①对定义域的任意x、y都有f(x)+f(y)+f(xy)②当x>1时,f(x)>0
已知函数f(x)定义域在R上的函数,且对任意的x,y都有f(x+y)=f(x)+f(y)-1成立.当x>0时,f(x)>
函数f(x)的定义域为R,并满足以下条件;1、对任意x属于R,有f(x)>0;2、对任意x,y属于R,有f(xy)=[f
定义在(-1,1)上的函数F(x)满足:对任意x,y属于(-1,1),都有f(x)+f(y)=f[(x+y)\(1+xy
弱智证明题,帮帮那个定义域为R上的函数f(x)满足下列条件f(0)=0,f(1)=1对任意实数x,y,都有f(x+y/2
已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立.求f(0)与f(1)的值
设函数y=f(X)是定义在R+上的函数,并且满足下面三个条件:(1)对整数x、y都有f(xy)=f(x)+f(y)...
设函数y=f(x)是定义在R上的函数.对任意正数x,y都有f(xy)=f(x)+f(y);当x大于1时,f(x)小于0;