设n维向量空间V.有一组基αl,α2,…,αn,另外,α1,α1+α2,...,α1+α2+…+αn也是Vn的基.又设向
设n维向量空间V.有一组基αl,α2,…,αn,另外,α1,α1+α2,...,α1+α2+…+αn也是Vn的基.又设向
e1,e2,...,en是向量空间V的一组基,且向量α1,α2,...,αn能由e1,e2,...,en线性表示,则α1
设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.
设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,
设向量组α1,α2,…,αn线性无关,向量组β,α1,α2,…,αn线性相关β,α1,α2,…,αn证明有且仅有一个向量
设向量组α1,α2,...,αn中,前n-1个向量线性相关,后n-1个向量线性无关,试讨论:
1设α1,α2,αn,β是向量空间中的向量,β是α1,α2,αn的线性组合,证明:如果β与每个αi(i
设A是n阶方阵,α1,α2...αn是n个线性无关的n维向量,证明rankA=n的充分必要条件是Aα1,Aα2,.,Aα
设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,A
设n维向量组α1,……,αm(m
求一道线性代数的题.设向量组α1,α2,.αn线性无关,讨论向量组β1,β2...βn的线性相关性
设n维向量组α1,α2,...,αn线性无关,证明:若n维向量β与每个αi(i=1,2,...,n)都正交,则β=0