作业帮 > 数学 > 作业

1.若点M(X,Y)在运动中,总满足√(根号,下同)X^2+(Y+3)^2+√x^2+(y+3)^2=10,则点M的

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 07:08:57
1.若点M(X,Y)在运动中,总满足√(根号,下同)X^2+(Y+3)^2+√x^2+(y+3)^2=10,则点M的
轨迹方程为多少?2.与圆(X+3)^2+Y^2=1外切又与圆(X-3)^2+y^2=9外切,求动圆的圆心轨迹方程.
1.若点M(X,Y)在运动中,总满足√(根号,下同)X^2+(Y+3)^2+√x^2+(y+3)^2=10,则点M的
1、你的题目中“√(根号,下同)X^2+(Y+3)^2+√x^2+(y+3)^2=10”这段有问题吧,怎么两个都是y+3啊,应该有一个是y-3吧
如果是y-3,那么把上式的两个根号下的表达式都看成是两点间距离计算
此时可以得到点M与点A(0,-3)和B(0,3)间的距离之和为定值10
根据椭圆定义可知M的轨迹为以点A,B为焦点的椭圆
易知a=5,c=3,所以b=4
椭圆方程为x^2/16+y^2/25=1(注意焦点在y轴上)
2、设动圆圆心为O,条件所给的两圆圆心分别为A(-3,0),B(3,0)
画个草图,根据两圆外切的性质:连心线长等于两圆半径之和
所以OA=r+1,OB=r+3(r为动圆半径)
所以OB-OA=2
也就是动点O到定点A、B的距离只差为定值2
根据双曲线定义可知O的轨迹为以A、B为焦点的双曲线的一支
易知a=1,c=3,所以b=2√2
所以方程为x^2-y^2/8=1(x<0)
注意这里只能是左支,所以必须有x的取值范围