作业帮 > 数学 > 作业

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:15:43
如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.

(1)求A、B、C三点的坐标;

(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;

(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.


谢谢!
如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.

(1)、由y=x2-1知A(-1,0)、B(1,0)、C(0,-1).
(2)、由A(-1,0)、B(1,0)、C(0,-1)可求出BC直线为y=x-1,从而设AP直线为y=x+b,将A(-1,0)代入得b=1,所以AP直线为y=x+1,
将y=x+1代入y=x2-1得P(2,3)或(-1,0)(舍去,因与A重合),所以三角形APB的高h=3,
又由A(-1,0)、B(1,0)、C(0,-1)知AB=2,三角形ACB的高OC=1.
所以S四边形ACPB=S三角形APB+S三角形ABC=4.
(3)存在.
由A(-1,0)、B(1,0)、C(0,-1),知AC=√2,BC=√2,AB=2,
根据勾股定理得三角形ACB为Rt三角形,且角ACB为直角,以AC垂直于BC,又因AP∥CB,即AP垂直于AC,所以三角形ACP为Rt三角形,且角PAC为直角,又由A(-1,0)、P(2,3)得AP=3√2.
根据y=x2-1设M(a,a2-1),则MG=a2-1,AG=-1-a或AG=a+1,
又因MG⊥x轴,即角MGA=角PAC=直角,所以AP:MG=AC:AG,可求得符合条件的a=4
即M(4,15).