作业帮 > 数学 > 作业

(1)已知cos[(π/3)-a]=根号3/3,求sin[5π/6)-a]+sin^2[(2π/3)+a]的值

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 06:11:08
(1)已知cos[(π/3)-a]=根号3/3,求sin[5π/6)-a]+sin^2[(2π/3)+a]的值
(2)求值:log8(3)*log9(2)+log1/2(三次根号下16)-(-3又3/8)^(-2/3)+(1.5)^-2
(1)已知cos[(π/3)-a]=根号3/3,求sin[5π/6)-a]+sin^2[(2π/3)+a]的值
(1)
cos[(π/3)-a]=√3/3
(5π/6-a)-(π/3-a)=π/2
(5π/6-a)=(π/2)+(π/3-a)
sin[(5π/6-a)=sin[(π/2)+(π/3-a)]=cos(π/3-a)=√3/3
(2π/3+a)+(π/3-a)=π
sin[(2π/3+a)=sin[(π/3-a)]=±√3/3
sin^2[(2π/3+a)=sin[(π/3-a)]=1/3
原式=(√3/3)+(1/3)=(√3+1)/3
(2)
log8(3)*log9(2)+log(1/2)(三次根号下16)=[lg3/lg8][lg2/lg9]+log(1/2)[2^(4/3)
=[lg3/(3lg2)][lg2/(2lg3)]-(4/3)
=(1/6)-(8/6)= - 7/6
(-27/8)^(-2/3)+(3/2)^(-2)=[-(3/2)^3]^(-2/3)+(3/2)^2=(2/3)^2+(3/2)^2=(4/9)+(9/4)=97/36
原式= -7/6-97/36= -139/36