相似矩阵的特征向量?B=P^(-1)AP,A和B相似,如果C是A,B的一个特征值,m是矩阵A的关于C的特征向量……为什么
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:31:59
相似矩阵的特征向量?
B=P^(-1)AP,A和B相似,如果C是A,B的一个特征值,m是矩阵A的关于C的特征向量……为什么B的关于特征值C的特征向量是P^(-1)m?怎么推的?..
B=P^(-1)AP,A和B相似,如果C是A,B的一个特征值,m是矩阵A的关于C的特征向量……为什么B的关于特征值C的特征向量是P^(-1)m?怎么推的?..
式一:B = (P^-1)AP (相似矩阵的定义)
所以,得式二:B(P^-1)
= (P^-1)AP(P^-1) (式一左右两边同乘以 P^-1)
= (P^-1)A (因为 P(P^-1) = I )
又因为 Am = Cm (特征值的定义)
所以:
B(P^-1)m = (P^-1)Am ( 式二左右同时乘以m )
= (P^-1)Cm ( 因为Am = Cm )
= C(P^-1)m ( C是常数,可以任意改变所在位置)
观察上式最左边和最右边,我们发现 B [ (P^-1)m ] = C [ (P^-1)m ],满足B关于特征值C的特征向量的定义,因此 (P^-1)m 是此特征向量.
所以,得式二:B(P^-1)
= (P^-1)AP(P^-1) (式一左右两边同乘以 P^-1)
= (P^-1)A (因为 P(P^-1) = I )
又因为 Am = Cm (特征值的定义)
所以:
B(P^-1)m = (P^-1)Am ( 式二左右同时乘以m )
= (P^-1)Cm ( 因为Am = Cm )
= C(P^-1)m ( C是常数,可以任意改变所在位置)
观察上式最左边和最右边,我们发现 B [ (P^-1)m ] = C [ (P^-1)m ],满足B关于特征值C的特征向量的定义,因此 (P^-1)m 是此特征向量.
相似矩阵的特征向量?B=P^(-1)AP,A和B相似,如果C是A,B的一个特征值,m是矩阵A的关于C的特征向量……为什么
矩阵A 和B 相似,那么他们的特征值和特征向量都相同吗?线性代数概念.
相似矩阵A和B有相同的特征值,特征向量与什么关系?
若同阶方阵A与B相似,下面正确的是() A.A与B有相同的特征值和特征向量 B.A与B都相似于一个对角矩阵...
A相似于B,a是A、B的一个特征值,b是A对应于a的特征向量,则B对应于特征值a的特征向量为?
N阶矩阵A,B相似,若特征向量相同,则对应的特征值是否相同
矩阵AB=BA,A可相似对角化,那么B可以相似对角化吗?A和B的特征值、特征向量相同吗?
A,B相似 ,且P^-1AP=B,若λ0为A的某特征值,a为与其对应的A的特征向量,则B对应于λ0的特征向量为
x是矩阵A的特征向量,则P^-1AP的特征向量为
关于相似矩阵的特征向量
矩阵的方幂 特征值求出了一个2阶或3阶矩阵A的特征值和特征向量,怎样求A的n次幂.(比如:知道了方阵A=[a b][c
线性代数选择题:设A,B为n阶矩阵,A且B与相似,则( ). (A)lAl=lBl (B)A与B有相同的特征值和特征向量