作业帮 > 数学 > 作业

求一下两个不定积分:1.∫[xe^x/(e^x+1)^2]dx 2.∫dx/[(sinx)^3cosx]

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:47:54
求一下两个不定积分:1.∫[xe^x/(e^x+1)^2]dx 2.∫dx/[(sinx)^3cosx]
求一下两个不定积分:1.∫[xe^x/(e^x+1)^2]dx 2.∫dx/[(sinx)^3cosx]
1.令y=e^x,x=lny,dx=1/ydy.
原式=∫lny/(y+1)^2dy
分部积分:令u=lny,v'=1/(y+1)^2
则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1)dy=-lny/(y+1)+∫+lny-ln(y+1)+c
将y 替换x ,则得:原式=-x/(e^x+1)+x-ln(e^x+1)+c
2.原式=∫[(sinx)^2+(cosx)^2]/(sinx)^2*sinx*cosxdx
=∫{[(sinx)^2+(cosx)^2]/sinxcosx+cosx/(sinx)^3}dx
=∫[sinx/cosx+cosx/sinx+cosx/(sinx)^3]dx
=-lncosx+lnsinx-1/2(sinx)^2+c