求一下两个不定积分:1.∫[xe^x/(e^x+1)^2]dx 2.∫dx/[(sinx)^3cosx]
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:47:54
求一下两个不定积分:1.∫[xe^x/(e^x+1)^2]dx 2.∫dx/[(sinx)^3cosx]
1.令y=e^x,x=lny,dx=1/ydy.
原式=∫lny/(y+1)^2dy
分部积分:令u=lny,v'=1/(y+1)^2
则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1)dy=-lny/(y+1)+∫+lny-ln(y+1)+c
将y 替换x ,则得:原式=-x/(e^x+1)+x-ln(e^x+1)+c
2.原式=∫[(sinx)^2+(cosx)^2]/(sinx)^2*sinx*cosxdx
=∫{[(sinx)^2+(cosx)^2]/sinxcosx+cosx/(sinx)^3}dx
=∫[sinx/cosx+cosx/sinx+cosx/(sinx)^3]dx
=-lncosx+lnsinx-1/2(sinx)^2+c
原式=∫lny/(y+1)^2dy
分部积分:令u=lny,v'=1/(y+1)^2
则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1)dy=-lny/(y+1)+∫+lny-ln(y+1)+c
将y 替换x ,则得:原式=-x/(e^x+1)+x-ln(e^x+1)+c
2.原式=∫[(sinx)^2+(cosx)^2]/(sinx)^2*sinx*cosxdx
=∫{[(sinx)^2+(cosx)^2]/sinxcosx+cosx/(sinx)^3}dx
=∫[sinx/cosx+cosx/sinx+cosx/(sinx)^3]dx
=-lncosx+lnsinx-1/2(sinx)^2+c
求一下两个不定积分:1.∫[xe^x/(e^x+1)^2]dx 2.∫dx/[(sinx)^3cosx]
求不定积分:1.∫e^(sinx)[x(cosx)^3-sinx]/(cosx)^2dx 2.∫[e^(3x)+e^x]
求下列不定积分:(1):1/[x(x-1)]dx (2):cos2x/(sinx+cosx)dx (3):(xe^x)/
求不定积分∫x.sinx^2.cosx^2dx
求不定积分∫xe^(x^2)dx?
∫[(x-cosx)/(1+sinx)]dx 不定积分,
求下列不定积分∫xe^x dx,∫e^xcos2xdx,∫e^2e^dx...
求下列不定积分:∫(e^2x-cosx/3)dx
∫sinx e^cosx dx不定积分 ∫(1/x^2)(sin(1/x))dx 不定积分
求不定积分∫e^x sinx dx
求下列不定积分1.∫xe^-x*dx 2.∫x²e^-x*dx 3.∫In(x²+1)dx 4.∫I
求不定积分 1.∫ x/(1+(x^2))dx 2.∫cos^2 x sinx dx