通过计算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 19:28:10
通过计算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1
将以上各式分别相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即:1+2+3+…+n=
将以上各式分别相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即:1+2+3+…+n=
n(n+1) |
2 |
23-13=3×12+3×1+1,
33-23=3×22+3×2+1,
43-33=3×32+3×3+1
┅┅
(n+1)3-n3=3×n2+3×n+1---(6分)
将以上各式分别相加得:
(n+1)3-13=3×(12+22+32+…+n2)+3×(1+2+3…+n)+n
所以:12+22+32+…+n2=
1
3[(n+1)3−1−n−3
1+n
2n]=
1
6n(n+1)(2n+1)---------(12分)
33-23=3×22+3×2+1,
43-33=3×32+3×3+1
┅┅
(n+1)3-n3=3×n2+3×n+1---(6分)
将以上各式分别相加得:
(n+1)3-13=3×(12+22+32+…+n2)+3×(1+2+3…+n)+n
所以:12+22+32+…+n2=
1
3[(n+1)3−1−n−3
1+n
2n]=
1
6n(n+1)(2n+1)---------(12分)
通过计算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=
观察下列等式:1=12,1+3=22,1+3+5=32,…根据观察可得:1+3+5+…+2n-1=______(n为正整
归纳猜想证明通过计算可得下列等式:2^2-1^2=2*1+1,3^2-2^2=2*2+1,4^2-3^2=2*3+1……
计算:12-22+32-42+52-62+…+n2-(n+1)2=________.(n属于奇数)
14、在公式(a+1)2=a2+2a+1中,当a分别取1,2,3,…,n时,可得下列n个等式(1+1)2=12+2×1+
计算lim(1/n2+1+2/n2+1+3/n2+1+...+n/n2+1)
12+22+32+42+……+n2=n+(n+1)(2n+1)/6为什么?
请问如何证明lim(n→∞)[n/(n2+n)+n/(n2+2n)+…+n/(n2+nn)]=1,
证明:12+22+32+……+n2=1/6n(n+1)(2n+1)
在数列{an}中,对于任意n属于N+ 等式a1+2a2+2^2a3+...+2^n-1an=(n2^n-2^n+1)t恒
在公式(a+1)^2=a^2+2a+1中,当a分别取1、2、3……n时,可得下列等式:(1+1)^2=1^2+2*1+1
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6