利用递推公式计算:I99=∫(1-x^2)^99/2dx,从0积到1.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 03:11:53
利用递推公式计算:I99=∫(1-x^2)^99/2dx,从0积到1.
In=∫(1-x^2)^n/2dx 分部积分
=[x*(1-x^2)^n/2]-∫x*n*(-2x)*(1-x^2)^(n-1)/2dx
前面一项代入0和1都为0,则
In=n*∫x^2*(1-x^2)^(n-1)dx=2n*∫x^2*(1-x^2)^(n-1)/2dx
那么,
(2n+1)In= 2n*In+In
=2n*∫(1-x^2)^n/2dx + 2n*∫x^2*(1-x^2)^(n-1)/2dx
=2n*∫(1-x^2)*(1-x^2)^(n-1)/2dx + 2n*∫x^2*(1-x^2)^(n-1)/2dx
=2n*∫(1-x^2)^(n-1)/2dx
=2n*I(n-1)
所以,In=I(n-1)*2n/(2n+1)
I(n-1)=I(n-2)*(2n-2)/(2n-1)
… = …
I2=I1*4/5
I1=I0*2/3
可得 In=I0*(2n)!/(2n+1)!
而I0=∫(1-x^2)^0/2dx=1/2
故In=(1/2)*(2n)!/(2n+1)!或(1/2)*4^n*(n!)^2/(2n+1)!
I99= (1/2)*198!/199!
=[x*(1-x^2)^n/2]-∫x*n*(-2x)*(1-x^2)^(n-1)/2dx
前面一项代入0和1都为0,则
In=n*∫x^2*(1-x^2)^(n-1)dx=2n*∫x^2*(1-x^2)^(n-1)/2dx
那么,
(2n+1)In= 2n*In+In
=2n*∫(1-x^2)^n/2dx + 2n*∫x^2*(1-x^2)^(n-1)/2dx
=2n*∫(1-x^2)*(1-x^2)^(n-1)/2dx + 2n*∫x^2*(1-x^2)^(n-1)/2dx
=2n*∫(1-x^2)^(n-1)/2dx
=2n*I(n-1)
所以,In=I(n-1)*2n/(2n+1)
I(n-1)=I(n-2)*(2n-2)/(2n-1)
… = …
I2=I1*4/5
I1=I0*2/3
可得 In=I0*(2n)!/(2n+1)!
而I0=∫(1-x^2)^0/2dx=1/2
故In=(1/2)*(2n)!/(2n+1)!或(1/2)*4^n*(n!)^2/(2n+1)!
I99= (1/2)*198!/199!
利用递推公式计算:I99=∫(1-x^2)^99/2dx,从0积到1.
利用递推公式计算反常积分In=∫(0,+∞)x^n*e^(-px)dx'(p>o)
利用格林公式计算曲线积分.∫ e∧x [cosy dx +(y-siny)dy],曲线为y=sinx从(0,0)到(π,
In=∫1/sin^n(x)dx求不定积分的递推公式
利用换元x=1-t/(1+t) 计算积分 0到1 ln(1+x)/(1+x^2) dx
利用递推公式计算反常积分
利用定积分定义计算 区间[0,1] ∫x^2dx 实在是写不出来了、、、、
积分从-1到2(x|x|)dx=
计算∫2到1(x+1)平方dx
计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧
计算定积分 ∫(1~0) xe^2x dx 请把公式写清楚
利用数项级数∑1/n^2=π^2/6 计算积分∫ln(1+x)/x dx