作业帮 > 数学 > 作业

二元复合函数求导如图z对x的偏导数明显只与f'u有关系,为什么他的答案式子里还含有f'v.还有求解此题的

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 04:21:09
二元复合函数求导

如图z对x的偏导数明显只与f'u有关系,为什么他的答案式子里还含有f'v.还有求解此题的结题过程.
二元复合函数求导如图z对x的偏导数明显只与f'u有关系,为什么他的答案式子里还含有f'v.还有求解此题的
试试:对方程求微分,得
    Fu*[dz-(1/x²)dx]+Fv*[dz+(1/y²)dy] = 0,
整理,得
    dz =[(Fu/x²)dx]-(Fv/y²)dy]/(Fu+Fv)
因此,
    Dz/Dx =(Fu/x²)/(Fu+Fv).
是那个答案.学数学不要靠猜,动手算算就好了.