线段AB是圆C1:x2+y2+2x-6y=0的一条直径,离心率为5的双曲线C2以A,B为焦点.若P是圆C1与双曲线C2的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 14:03:09
线段AB是圆C1:x2+y2+2x-6y=0的一条直径,离心率为
5 |
∵圆C1:x2+y2+2x-6y=0的半径r=
1
2
4+36=
10,
线段AB是圆C1:x2+y2+2x-6y=0的一条直径,
离心率为
5的双曲线C2以A,B为焦点,
∴双曲线C2的焦距2c=|AB|=2
10,
∵P是圆C1与双曲线C2的一个公共点,
∴||PA|-|PB||=2a,|PA|2+|PB|2=40,
∴|PA|2+|PB|2-2|PA||PB|=4a2,
∵c=
10,e=
c
a=
5,
∴a=
2,
∴2|PA||PB|=32,
∴∴|PA|2+|PB|2+2|PA||PB|=(|PA|+|PB|)2=72,
∴|PA|+|PB|=6
2.
故选D.
1
2
4+36=
10,
线段AB是圆C1:x2+y2+2x-6y=0的一条直径,
离心率为
5的双曲线C2以A,B为焦点,
∴双曲线C2的焦距2c=|AB|=2
10,
∵P是圆C1与双曲线C2的一个公共点,
∴||PA|-|PB||=2a,|PA|2+|PB|2=40,
∴|PA|2+|PB|2-2|PA||PB|=4a2,
∵c=
10,e=
c
a=
5,
∴a=
2,
∴2|PA||PB|=32,
∴∴|PA|2+|PB|2+2|PA||PB|=(|PA|+|PB|)2=72,
∴|PA|+|PB|=6
2.
故选D.
线段AB是圆C1:x2+y2+2x-6y=0的一条直径,离心率为5的双曲线C2以A,B为焦点.若P是圆C1与双曲线C2的
已知双曲线C1:x2/a2-y2/b2=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双
已知双曲线C1:x2/a2-y2/b2的离心率为2,若抛物线C2:x2=2py的焦点到双曲线C1的渐近线的距离为2,若A
已知椭圆C1:X2/a2+Y2/b2的一条准线方程为x=25/4,其左右顶点分别是A、B.双曲线C2:X2/a2-Y2/
已知双曲线C1:X^2/a^2-Y^2/b^2=1的右焦点F为抛物线C2:y^2=2px的焦点,点p为双曲线C1与抛物线
已知抛物线C1:y的平方=20x的焦点是中心在坐标原点的双曲线C2的一个焦点,且双曲线C2的离心率为3分之5,
设F是双曲线x2/a2-y2/b2=1的右焦点,双曲线两渐近线分别为C1,C2过F作直线C1的垂线,分别交C1,C2于A
已知椭圆c1:x2/a2+ y2/b2=1与双曲线c2:x2-y2/4=1有公共的焦点,c2的一条渐进线与以c1的长轴为
已知圆C1:x2+y2+4x+1=0和圆C2:x2+y2+2x+2y+1=0,则以圆C1与圆C2的公共弦为直径的圆的方程
设F是抛物线C1:y2=2px 的焦点,点A是抛物线与双曲线C2:x2 a2 -y2 b2 =1(a>0,b>0)的一条
F1,F2是椭圆C1:x^2/4+y^2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共焦点.若四
已知双曲线C1的中心为坐标原点,且与椭圆C2:x^2/16+y^2/8=1有相同的焦点,若双曲线C1