已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 13:37:50
已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”
设函数f(x)=(x+1-a)/(a-x),定义域为A
(1) 试证明y=f(x)的图像关于点(a,-1)成中心对称
(2)当x属于[a-2,a-1]时,求证:f(x)属于[-(1/2),0]
(3)对于给定的x1属于A,设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止.若对任意xi属于A,构造过程可以无限进行下去,求a的值.
设函数f(x)=(x+1-a)/(a-x),定义域为A
(1) 试证明y=f(x)的图像关于点(a,-1)成中心对称
(2)当x属于[a-2,a-1]时,求证:f(x)属于[-(1/2),0]
(3)对于给定的x1属于A,设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止.若对任意xi属于A,构造过程可以无限进行下去,求a的值.
已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”
设函数f(x)=(x+1-a)/(a-x),定义域为A
(1)试证明y=f(x)的图像关于点(a,-1)成中心对称
(2)当x属于[a-2,a-1]时,求证:f(x)属于[-(1/2),0]
(3)对于给定的x1属于A,设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止.若对任意xi属于A,构造过程可以无限进行下去,求a的值.
(1)证明:∵函数f(x)=(x+1-a)/(a-x)=1/(a-x)-1
F(a+x)=-1/x-1
F(a-x)=1/x-1
F(a+x)+ F(a-x)=-2
∴f(x)的图像关于点(a,-1)成中心对称
(2)证明:∵函数f(x)=1/(a-x)-1,∴其定义域为A={x|x≠a}
F’(x)=1/(a-x)^2>0
∴当x∈(-∞,a)或(a,+∞)时,单调增
∵x属于[a-2,a-1]
F(a-2)=-1/2
F(a-1)=0
∴f(x)属于[-(1/2),0]
(3)解析:∵设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止
要对任意xi属于A,构造过程可以无限进行下去,只要xi不取a即可
∵函数f(x)=1/(a-x)-1,∴其定义域为A={x|x≠a}
令1/(a-x)-1≠a==>x≠(a^2+a-1)/(a-1)
∴当a=-1时,函数f(x)在x=-1处无定义,即1/(a-x)-1≠a恒成立
∴xi不取-1
∴构造过程可以无限进行下去
设函数f(x)=(x+1-a)/(a-x),定义域为A
(1)试证明y=f(x)的图像关于点(a,-1)成中心对称
(2)当x属于[a-2,a-1]时,求证:f(x)属于[-(1/2),0]
(3)对于给定的x1属于A,设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止.若对任意xi属于A,构造过程可以无限进行下去,求a的值.
(1)证明:∵函数f(x)=(x+1-a)/(a-x)=1/(a-x)-1
F(a+x)=-1/x-1
F(a-x)=1/x-1
F(a+x)+ F(a-x)=-2
∴f(x)的图像关于点(a,-1)成中心对称
(2)证明:∵函数f(x)=1/(a-x)-1,∴其定义域为A={x|x≠a}
F’(x)=1/(a-x)^2>0
∴当x∈(-∞,a)或(a,+∞)时,单调增
∵x属于[a-2,a-1]
F(a-2)=-1/2
F(a-1)=0
∴f(x)属于[-(1/2),0]
(3)解析:∵设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止
要对任意xi属于A,构造过程可以无限进行下去,只要xi不取a即可
∵函数f(x)=1/(a-x)-1,∴其定义域为A={x|x≠a}
令1/(a-x)-1≠a==>x≠(a^2+a-1)/(a-1)
∴当a=-1时,函数f(x)在x=-1处无定义,即1/(a-x)-1≠a恒成立
∴xi不取-1
∴构造过程可以无限进行下去
已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对
已知定理;“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点(a,
已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点
已知函数f(x)=2x的反函数g(x)满足g(a) g(b)=4,求a分之1加b分之1最小值
已知函数g(x)与f(x)的图像关于直线y=x的对称,点A,B,C在g(x)的图像上,它们的横坐标分别为a,a+4,a+
用定义判断函数奇偶性1)y=g(x)对一切实数a,b都有g(a+b)=g(a)+g(b)2)函数h(x)满足h(x+y)
已知函数f(x)=x2-2x+2,g(x)=ax2+bx+c,若y=g(x)的图像关于(2,0)对称,则a+b+c等于
若函数 f(x)=loga(x+b)的图像如下图所示,其中a,b为常数.则函数g(x)=a^x+b的图像
已知函数f(x-1)的图像与函数g(x)的图像关于直线y=x对称,且g(1)=2则:A,f(1)=1 B,f(2)=1
柯西中值定理证明:f(a)-f(m)/g(m)-g(b) =f'(m)/g'(m) f(x),g(x)满足在区间a,b连
设函数f(x)=2^x+a/2^x-1(a为常数)当a=0时,若函数y=g(x)的图像与f(x)的图像关于直线x=2对称
已知函数g(x)=ax^2+1/bx+c(a,b,c属于N),g(-x) = -g(x),g(1)=2,g(2)