作业帮 > 数学 > 作业

和勾股定理有关的几何证明题~

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:05:24
和勾股定理有关的几何证明题~

如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EH=3厘米,EF=4厘米,则AD的长是多少厘米?
和勾股定理有关的几何证明题~
∵∠HEN=1/2∠AEN,∠FEN=1/2∠BEN,
∴∠HEF=1/2(∠AEN+∠BEN)=90°,
∴S△EFH=1/2*EH*EF=6,
∵四边形EFGH是矩形,
∴△GFH≌△EHF,
∴S△GFH=6,
∵折叠,
∴S△AEH+S△BEF=S△EFH=6,
同理S△CFG+S△DGH=6,
∴S正方形=24
∴AD=2√6
再问: 四边形ABCD是矩形,不是正方形。
再答: 易知FH=5,
设HN=X,则FN=5-X,
由EH²-HN²=EN²=EF²-FN²得
3²-X²=4²-(5-X)²
解得X=9/5,
同理可知HM=16/9
又∵AH=HN,DH=MH,
∴AD=AH+DH=5