关于向量组的秩设矩阵A的秩为r,任取A的列向量组的一个极大无关组a1,a2.ar,设B=(a1,a2.ar),在B中任取
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:41:38
关于向量组的秩
设矩阵A的秩为r,任取A的列向量组的一个极大无关组a1,a2.ar,设B=(a1,a2.ar),在B中任取r个线性无关的行向量,则知由它们组成的r阶子式不为0
我不明白为什么要在B中取r个线性无关的行向量,而不是任取r个行向量.
设矩阵A的秩为r,任取A的列向量组的一个极大无关组a1,a2.ar,设B=(a1,a2.ar),在B中任取r个线性无关的行向量,则知由它们组成的r阶子式不为0
我不明白为什么要在B中取r个线性无关的行向量,而不是任取r个行向量.
因为由a1,a2.ar是极大无关组可知R(B)=r,于是知道B一定有至少一个r阶子式不为零.
在行向量中如果任取r个,而不是取线性无关的r个,是完全可以得到0子式的.
举个例子吧,考虑3个4维列向量:a1=(1,0,0,0)^T,a2=(0,1,0,0)^T,a3=(0,0,1,0)^T,它们线性无关,但显然不是任取3个行向量,所得的3阶子式都为非零吧.你就取第2,3,4行就可以得到一个0子式了.
在行向量中如果任取r个,而不是取线性无关的r个,是完全可以得到0子式的.
举个例子吧,考虑3个4维列向量:a1=(1,0,0,0)^T,a2=(0,1,0,0)^T,a3=(0,0,1,0)^T,它们线性无关,但显然不是任取3个行向量,所得的3阶子式都为非零吧.你就取第2,3,4行就可以得到一个0子式了.
关于向量组的秩设矩阵A的秩为r,任取A的列向量组的一个极大无关组a1,a2.ar,设B=(a1,a2.ar),在B中任取
设a1,a2...ar与b1,b2...bt分别是A和B行向量组的极大线性无关组
线性代数的题,6、向量组a1,a2…ar线性无关的充要条件是()(A)a1,a2…ar均不为零向量(B)a1,a2…ar
因为A,B的秩相等,所以向量组a1,a2,...,an的极大线性无关组也是向量组a1,a2,...,an,b的极大线性无
设向量组a1,a2.am的秩为r,则a1,a2,.am中任意r个线性无关的向量都构成它的极大线性无关组
设A3的列向量组为a1,a2,a3,且|A|=3,B=(2a1+a3,a3,a2),则|B|=?
向量的极大无关组这道题是求一个向量组的所有极大无关组,化简成阶梯型矩阵后变成如下:列向量组{a1,a2,a3,a4,a5
设b1=a1,b2=a1+a2,...,br=a1+a2+...+ar,且向量组a1,a2,...,ar,线性无关,证明
关于线性代数的小问题 设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1
设n维向量a1,a2,…,ar是一组两两正交的非零向量,证明:a1,a2,…,ar线性无关.
向量租的秩 设向量租a1,a2,a3线性代数,而向量租a2,a3,a4线性无关,则向量组a1,a2
设a1,a2,^,a,为n维向量组,且秩 (a1,a2,^,a)=r,则()