求全微分(x^2-2yz)dx+(y^2-2xz)dy+(z^2-2xy)dz的原函数
求全微分(x^2-2yz)dx+(y^2-2xz)dy+(z^2-2xy)dz的原函数
证明yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz为全微分,并求原函数
z=f(x,y)是方程e^(-xy)-2z+e^z给出的函数,求全微分dz
求方程组dx/y^2+z^2-x^2=dy/-2xy=dz / -2xz的通解
(2X+Z-Y)/(X^2-XY+XZ-YZ)-(Y-Z)/(X^2-XY-XZ+YZ)
22.已知二元隐函数z=z(x,y)由方程z^2+yz=1-xsiny确定,求全微分dz
13.已知二元隐函数z=z(x,y)由方程sinz-yz^2=1-2xyz确定,求全微分dz
设Z=f(x^2 +y,2xy),求dz/dx和dz/dy
设函数z=x/y,求全微分dz|(2,1)
设函数z=x/y.求全微分 dz|(2,1)
设函数z=z(x,y)由方程xz^2+yz=1所确定,则dz/dx=?
求(2X+Z-Y)/(X^2-XY+XZ-YZ)-(2X+Y+Z)/(X^2+XY+XZ+YZ)