作业帮 > 数学 > 作业

设数列{an}满足a1=2,a(n+1)=an+1/an(1)求a2,a3,a4(2)比较an与根号(2n+1)的大小,

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:56:10
设数列{an}满足a1=2,a(n+1)=an+1/an(1)求a2,a3,a4(2)比较an与根号(2n+1)的大小,并证明
设数列{an}满足a1=2,a(n+1)=an+1/an(1)求a2,a3,a4(2)比较an与根号(2n+1)的大小,
1、 a2=2+1/2=5/2
a3=5/2+2/5==29/10
a4=29/10+10/29=941/290
2、猜想有an>sqr(2n+1)
下面用数学归纳法来证明
当n=1时显然有a1>sqr(3)
假没当n=k时有ak>sqr(2k+1)
则当n=k+1时
[a(k+1)]^2=(ak+1/ak)^2=(ak)^2+2+1/(ak)^2>ak^2+2>(2k+1)+2=2k+3
因为ak是正项数列
所以a(k+1)>sqr(2k+3)
即ak>sqr(2(k+1)+1)
所以当n=k+1时有ak>sqr(2(k+1)+1)
于是对于任意正整数n都总有an>sqr(2n+1)