已知函数f(x)=ax^3+bx^2+cx+d是R上的奇函数,且在x=1时取得极小值-2/3
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:17:37
已知函数f(x)=ax^3+bx^2+cx+d是R上的奇函数,且在x=1时取得极小值-2/3
1)求函数f(x)的解析式
2)对任意X1,X2∈[-1,1]证明|f(x1)-f(x2)|≤4/3
1)求函数f(x)的解析式
2)对任意X1,X2∈[-1,1]证明|f(x1)-f(x2)|≤4/3
函数f(x) 为奇函数,
f(-x)=-f(x)
所以-[ax^3+bx^2+cx+d]=a(-x)^3+b(-x)^2-cx+d
所以b=0,d=0
所以f=ax^3+cx
f'=3ax^2+c
当x=1时f(x)有极小值-3/2.
所以x=1是f'=0的一个根,所以3a+c=0
f(1)=a+c=-3/2
联立方程可得:a=3/4,c=-9/4
f(x)=3/4x^3-9/4x
f'(x)=9/4x^2-9/4=9/4(x^2-1)
故当-1
f(-x)=-f(x)
所以-[ax^3+bx^2+cx+d]=a(-x)^3+b(-x)^2-cx+d
所以b=0,d=0
所以f=ax^3+cx
f'=3ax^2+c
当x=1时f(x)有极小值-3/2.
所以x=1是f'=0的一个根,所以3a+c=0
f(1)=a+c=-3/2
联立方程可得:a=3/4,c=-9/4
f(x)=3/4x^3-9/4x
f'(x)=9/4x^2-9/4=9/4(x^2-1)
故当-1
已知函数f(x)=ax^3+bx^2+cx+d是R上的奇函数,且在x=1时取得极小值-2/3
已知定义在R上的函数f(x)=ax的3次方-2bx平方+cx+4d的图像关于原点对称.且x=1时.f(x)取得极小值-2
已知 f(x)=ax^3+bx^2+cx(a≠0)是定义在R上的奇函数,且x=-1时,函数取得极值1
已知函数f(x)=ax^3+bx^2+cx+d是奇函数,且当x=—根号3/3时,f(x)取得极小值—2根号3/9.一、求
【急】已知函数f(x)=ax^3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2
已知函数f(x)=ax^3+bx^2+cx,是在R上的奇函数,且,f(1)=3,f(2)=12
已知函数f(x)=ax^3+bx^2+cx,是在R上的奇函数,且,f(1)=2,f(2)=10
已知函数f(x)=ax^3+bx^2+cx是R上的奇函数,且f(1)=3f(2)=12求abc的值
已知函数f(x)=1/3ax^3+bx^2+cx+d,在x=x1处取得极大值,在x=x2处取得极小值,且x1小于x2,证
已知函数f(x)=ax^3-2bx^2+cx+4d的图像关于原点对称,且当x=-1时,f(x)取得极小 值-2/3.
已知R上的奇函数f(x)=ax^3+bx^2+cx+d在点P(1,f(1))处的切线斜率为-9,且当x=2时函数f(x)
已知R上的奇函数f(x)=ax^3+bx^2+cx+d在点P(1)处的切线斜率为-9,且当x=2时函数f(x)有极值,求