设limAn=a,limBn=b,试证明:lim{(A1*Bn+A2*Bn-1+...+An*B1)\n}=ab (n-
设limAn=a,limBn=b,试证明:lim{(A1*Bn+A2*Bn-1+...+An*B1)\n}=ab (n-
设an,bn都是等差数列,其中a1=3,b1=2,b2是a2与a3的等差数列,liman/bn=1/2,求lim(1/a
已知数列{An}与{Bn}都是公差不为零的等差数列,且limAn/Bn=2,求lim(A1+A2+……+An)/(n*B
设a1=2,a2=4,数列{bn}满足:bn=a(n+1)-an,b(n+1)=2bn+2.
急 设A1=2,A2=4,数列Bn满足:Bn=A(n+1)-An,B(n+1)=2Bn +2
急 设A1=2,A2=4,数列BN满足:Bn=A(n+1)-An,B(n+1)=2Bn+2
设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1) –An,B(n+1)=2Bn+2.
已知数列{an}、{bn}都是公差不为零的等差数列,且liman/bn=3,求lim(b1+b2+……b3n)/(n*a
两个等差数列{an},{bn},a1+a2+a3+...+an/b1+b2+b3+...+bn=7n+2/n+3. 则a
求证极限:设数列{An},{Bn}均收敛,An=n(Bn-Bn-1),求证limAn = 0.
已知两等差数列an.bn,且a1+a2+.+an/b1+b2+.+bn=3n+1/4n+3,对于任意正整数n都成立,求a
数列{an}、{bn}的每一项都是正数,a1=8,b1=16,且an,bn,a(n+1)成等差,bn,a(n+1),b(