证明由方程F(x-az,y-bz)=0确定的函数z=z(x,y)应满足a(ðz/ðx)+b(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 22:28:01
证明由方程F(x-az,y-bz)=0确定的函数z=z(x,y)应满足a(ðz/ðx)+b(ðz/ðy)=1
设u=x-az,v=y-bz
则,原方程写为 F(u,v)=0
方程F(u,v)=0 两端分别对x,y求偏导得
ðF/ðx=ðF/ðu*(ðu/ðx+ðu/ðz*ðz/ðx)+ðF/ðv*(ðv/ðz*ðz/ðx)
=ðF/ðu*(1-a*ðz/ðx)+ðF/ðv*(-b*ðz/ðx)
=ðF/ðu-a*ðF/ðu*ðz/ðx-b*ðF/ðv*ðz/ðx
=ðF/ðu-(a*ðF/ðu+b*ðF/ðv)ðz/ðx
=0
得:ðz/ðx=a*(ðF/ðu)/(a*ðF/ðu+b*ðF/ðv)
ðF/ðy=ðF/ðu*(ðu/ðz*ðz/ðy)+ðF/ðv*(ðv/ðy+ðv/ðz*ðz/ðy)
=ðF/ðu*(-a*ðz/ðy)+ðF/ðv*(1-b*ðz/ðy)
=-a*ðF/ðu*ðz/ðy+ðF/ðv-b*ðF/ðv*ðz/ðy
=ðF/ðv-(a*ðF/ðu+b*ðF/ðv)*ðz/ðy
得:ðz/ðy=a*(ðF/ðv)/(a*ðF/ðu+b*ðF/ðv)
则,a(ðz/ðx)+b(ðz/ðy)
=a*(ðF/ðu)/(a*ðF/ðu+b*ðF/ðv)+b*(ðF/ðv)/(a*ðF/ðu+b*ðF/ðv)
=(a*ðF/ðu+b*ðF/ðv)/(a*ðF/ðu+b*ðF/ðv)
=1
则,原方程写为 F(u,v)=0
方程F(u,v)=0 两端分别对x,y求偏导得
ðF/ðx=ðF/ðu*(ðu/ðx+ðu/ðz*ðz/ðx)+ðF/ðv*(ðv/ðz*ðz/ðx)
=ðF/ðu*(1-a*ðz/ðx)+ðF/ðv*(-b*ðz/ðx)
=ðF/ðu-a*ðF/ðu*ðz/ðx-b*ðF/ðv*ðz/ðx
=ðF/ðu-(a*ðF/ðu+b*ðF/ðv)ðz/ðx
=0
得:ðz/ðx=a*(ðF/ðu)/(a*ðF/ðu+b*ðF/ðv)
ðF/ðy=ðF/ðu*(ðu/ðz*ðz/ðy)+ðF/ðv*(ðv/ðy+ðv/ðz*ðz/ðy)
=ðF/ðu*(-a*ðz/ðy)+ðF/ðv*(1-b*ðz/ðy)
=-a*ðF/ðu*ðz/ðy+ðF/ðv-b*ðF/ðv*ðz/ðy
=ðF/ðv-(a*ðF/ðu+b*ðF/ðv)*ðz/ðy
得:ðz/ðy=a*(ðF/ðv)/(a*ðF/ðu+b*ðF/ðv)
则,a(ðz/ðx)+b(ðz/ðy)
=a*(ðF/ðu)/(a*ðF/ðu+b*ðF/ðv)+b*(ðF/ðv)/(a*ðF/ðu+b*ðF/ðv)
=(a*ðF/ðu+b*ðF/ðv)/(a*ðF/ðu+b*ðF/ðv)
=1
证明由方程F(x-az,y-bz)=0确定的函数z=z(x,y)应满足a(ðz/ðx)+b(
偏导数证明题设t(u,v)具有连续偏导数.证明:由方程t(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a
设Φ(u,v)具有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(эz/эx)
设Φ(u,v)有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(∂
高数 设函数Z=Z(x,y)由方程D(cx-az,cy-bz)=0所确定.
求由方程z=xye^z所确定的隐函数z=f(x,y)的偏导数az/ax,az/ay
设z=z(x,y)是由方程f(x-az,y-bz)=0所定义的隐函数,其中f(u,v)可微,求对y和对x的偏导数
已知a(y-z)+b(z-x)+c(x-y)=0求证(cy-bz)/y-z=(az-cx)/z-x=(bx-ay)/x-
设x-az=f(y-bz),其中函数f(u)可微,验证:a(δz/δx)+b(δz/δy)=1
设Z=f(x,y)是由方程e^z x y=3确定的隐函数
设x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导的函数,证明:(
大学高数 设函数z=z(x,y)是由方程F(x+z/y,y+z/x)所确定的,其中F具有连续偏导数求偏z/偏x