1.已知数列{an}满足a1=1,a(n+1)(n+1为角标)=an+2,且前n项的和味Sn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 10:57:14
1.已知数列{an}满足a1=1,a(n+1)(n+1为角标)=an+2,且前n项的和味Sn
求(1)求数列{Sn/n}的前n项和Tn
(2)求数列{1/Tn}的前n项和
2.解不等式a(x-1)/(x-2)>2
求(1)求数列{Sn/n}的前n项和Tn
(2)求数列{1/Tn}的前n项和
2.解不等式a(x-1)/(x-2)>2
第一题:
1)
由递推关系 及 a1=1知:数列{an}是以1为首项2为公差的等差数列;
则:Sn=n^2……………………(就是n的平方了,下同);
则Tn=1+2+3+…+n=(1/2)*n*(n+1);
2)
1/Tn =2/[n*(n+1)]=2[(1/n)-(1/n+1)]…………(这是裂项相消);
设:Qn是数列{1/Tn}的前n项和;
则:Qn=2{[1-(1/2)]+[(1/2)-(1/3)]+…+[(1/n)-(1/n+1)]}=2-2/(n+1).
第二题:
原式等价于:ax^2-3ax+2(a-1)>0;
Δ=9a^2-4*a*2(a-1)=a^2+8a;
所以:
a
1)
由递推关系 及 a1=1知:数列{an}是以1为首项2为公差的等差数列;
则:Sn=n^2……………………(就是n的平方了,下同);
则Tn=1+2+3+…+n=(1/2)*n*(n+1);
2)
1/Tn =2/[n*(n+1)]=2[(1/n)-(1/n+1)]…………(这是裂项相消);
设:Qn是数列{1/Tn}的前n项和;
则:Qn=2{[1-(1/2)]+[(1/2)-(1/3)]+…+[(1/n)-(1/n+1)]}=2-2/(n+1).
第二题:
原式等价于:ax^2-3ax+2(a-1)>0;
Δ=9a^2-4*a*2(a-1)=a^2+8a;
所以:
a
已知数列an的前n项和为sn,且满足sn=n²an-n²(n-1),a1=1/2
1.已知数列{an}满足a1=1,a(n+1)(n+1为角标)=an+2,且前n项的和味Sn
已知数列{an}的前n项和为Sn,且满足a1=1,2an/(anSn-Sn^2)=1(n大于等于2)
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知数列{an}满足a1=1,an+1=Sn+(n+1)(n∈N*),其中Sn为{an}的前n项和,
已知数列{an}的前n项和为Sn,且满足a1=1,Sn-Sn-1=2SnSn-1(n≥2).
已知数列{an}的前n项和为Sn,满足Sn=n^2an-n^2(n-1),且a1=1/2 (1)令bn=n+1/n *S
已知数列an的前n项和为Sn,且满足an+2Sn·S(n-1)=0(n≥2),a1=1.5
已知数列{an}的前n项和为Sn,且满足a1=1/2,an=-SnSn-1(n>=2)
已知数列an的前n项和为Sn,且满足an+SnSn-1=0(n>=2,n∈N*),a1=1/2.
已知数列{an}的前n项和为Sn,且满足a1=12,an+2SnSn-1=0(n≥2).
已知数列{an}的首项a1=3,前n项和为Sn,且S(n+1)=3Sn+2n(n∈N)